Portella, Victor S.
Lower Bounds for Private Estimation of Gaussian Covariance Matrices under All Reasonable Parameter Regimes
Portella, Victor S., Harvey, Nick
We prove lower bounds on the number of samples needed to privately estimate the covariance matrix of a Gaussian distribution. Our bounds match existing upper bounds in the widest known setting of parameters. Our analysis relies on the Stein-Haff identity, an extension of the classical Stein's identity used in previous fingerprinting lemma arguments.
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Kunstner, Frederik, Portella, Victor S., Schmidt, Mark, Harvey, Nick
The backtracking line-search is an effective technique to automatically tune the step-size in smooth optimization. It guarantees similar performance to using the theoretically optimal step-size. Many approaches have been developed to instead tune per-coordinate step-sizes, also known as diagonal preconditioners, but none of the existing methods are provably competitive with the optimal per-coordinate stepsizes. We propose multidimensional backtracking, an extension of the backtracking line-search to find good diagonal preconditioners for smooth convex problems. Our key insight is that the gradient with respect to the step-sizes, also known as hypergradients, yields separating hyperplanes that let us search for good preconditioners using cutting-plane methods. As black-box cutting-plane approaches like the ellipsoid method are computationally prohibitive, we develop an efficient algorithm tailored to our setting. Multidimensional backtracking is provably competitive with the best diagonal preconditioner and requires no manual tuning.
Online mirror descent and dual averaging: keeping pace in the dynamic case
Fang, Huang, Harvey, Nicholas J. A., Portella, Victor S., Friedlander, Michael P.
Online mirror descent (OMD) and dual averaging (DA)---two fundamental algorithms for online convex optimization---are known to have very similar (and sometimes identical) performance guarantees when used with a fixed learning rate. Under dynamic learning rates, however, OMD is provably inferior to DA and suffers a linear regret, even in common settings such as prediction with expert advice. We modify the OMD algorithm through a simple technique that we call stabilization. We give essentially the same abstract regret bound for OMD with stabilization and for DA by modifying the classical OMD convergence analysis in a careful and modular way that allows for straightforward and flexible proofs. Simple corollaries of these bounds show that OMD with stabilization and DA enjoy the same performance guarantees in many applications---even under dynamic learning rates. We also shed light on the similarities between OMD and DA and show simple conditions under which stabilized-OMD and DA generate the same iterates.