Goto

Collaborating Authors

 Popescu, Octav


An Integrated Platform for Studying Learning with Intelligent Tutoring Systems: CTAT+TutorShop

arXiv.org Artificial Intelligence

Intelligent tutoring systems (ITSs) are effective in helping students learn; further research could make them even more effective. Particularly desirable is research into how students learn with these systems, how these systems best support student learning, and what learning sciences principles are key in ITSs. CTAT+Tutorshop provides a full stack integrated platform that facilitates a complete research lifecycle with ITSs, which includes using ITS data to discover learner challenges, to identify opportunities for system improvements, and to conduct experimental studies. The platform includes authoring tools to support and accelerate development of ITS, which provide automatic data logging in a format compatible with DataShop, an independent site that supports the analysis of ed tech log data to study student learnings. Among the many technology platforms that exist to support learning sciences research, CTAT+Tutorshop may be the only one that offers researchers the possibility to author elements of ITSs, or whole ITSs, as part of designing studies. This platform has been used to develop and conduct an estimated 147 research studies which have run in a wide variety of laboratory and real-world educational settings, including K-12 and higher education, and have addressed a wide range of research questions. This paper presents five case studies of research conducted on the CTAT+Tutorshop platform, and summarizes what has been accomplished and what is possible for future researchers. We reflect on the distinctive elements of this platform that have made it so effective in facilitating a wide range of ITS research.