Goto

Collaborating Authors

 Popa, Raluca Ada


A Framework for Evaluating Emerging Cyberattack Capabilities of AI

arXiv.org Artificial Intelligence

As frontier models become more capable, the community has attempted to evaluate their ability to enable cyberattacks. Performing a comprehensive evaluation and prioritizing defenses are crucial tasks in preparing for AGI safely. However, current cyber evaluation efforts are ad-hoc, with no systematic reasoning about the various phases of attacks, and do not provide a steer on how to use targeted defenses. In this work, we propose a novel approach to AI cyber capability evaluation that (1) examines the end-to-end attack chain, (2) helps to identify gaps in the evaluation of AI threats, and (3) helps defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation to support red teaming. To achieve these goals, we propose adapting existing cyberattack chain frameworks to AI systems. We analyze over 12,000 instances of real-world attempts to use AI in cyberattacks catalogued by Google's Threat Intelligence Group. Using this analysis, we curate a representative collection of seven cyberattack chain archetypes and conduct a bottleneck analysis to identify areas of potential AI-driven cost disruption. Our evaluation benchmark consists of 50 new challenges spanning different phases of cyberattacks. Based on this, we devise targeted cybersecurity model evaluations, report on the potential for AI to amplify offensive cyber capabilities across specific attack phases, and conclude with recommendations on prioritizing defenses. In all, we consider this to be the most comprehensive AI cyber risk evaluation framework published so far.


JudgeBench: A Benchmark for Evaluating LLM-based Judges

arXiv.org Artificial Intelligence

LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ Large Language Models (LLMs) have demonstrated remarkable success in recent years and are still evolving at a rapid pace. With more advanced AI models coming out every month, a central challenge is how to evaluate, compare, and supervise these models. While human judgments have traditionally been the gold standard in evaluating and supervising language models, collecting human judgments is often costly and time-consuming. As an alternative, using LLM-based judges (Zheng et al., 2024) has become a scalable paradigm in addressing this limitation, and has been increasingly adopted to evaluate and rank models. Moreover, these LLM-based judges are now integral to enhancing models' capability, serving as reward models during training (Yuan et al., 2024; Luo et al., 2024a), and acting as verifiers during inference to select the best response from multiple candidates (Cobbe et al., 2021; Lightman et al., 2023). Despite the widespread adoption, a fundamental question remains: How reliable are these LLMbased judges themselves? Since LLMs themselves are prone to make logical and factual mistakes, how can we trust that LLM-based judges are accurate and objective? To evaluate LLM-based judges, many prior works have focused on these judges' agreement with human preference (Dubois et al., 2024; Zheng et al., 2024; Zhang et al., 2023; Wang et al., 2023a). The core assumption implied in these works is that crowdsourced human annotators will evaluate the responses objectively and not make mistakes. Prompt: Rewrite the sentence using gender-neutral language: A salesman is giving a presentation. A salesperson is giving a presentation.


LLoCO: Learning Long Contexts Offline

arXiv.org Artificial Intelligence

Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using $30\times$ fewer tokens during inference. LLoCO achieves up to $7.62\times$ speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.


GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are evolving beyond their classical role of providing information within dialogue systems to actively engaging with tools and performing actions on real-world applications and services. Today, humans verify the correctness and appropriateness of the LLM-generated outputs (e.g., code, functions, or actions) before putting them into real-world execution. This poses significant challenges as code comprehension is well known to be notoriously difficult. In this paper, we study how humans can efficiently collaborate with, delegate to, and supervise autonomous LLMs in the future. We argue that in many cases, "post-facto validation" - verifying the correctness of a proposed action after seeing the output - is much easier than the aforementioned "pre-facto validation" setting. The core concept behind enabling a post-facto validation system is the integration of an intuitive undo feature, and establishing a damage confinement for the LLM-generated actions as effective strategies to mitigate the associated risks. Using this, a human can now either revert the effect of an LLM-generated output or be confident that the potential risk is bounded. We believe this is critical to unlock the potential for LLM agents to interact with applications and services with limited (post-facto) human involvement. We describe the design and implementation of our open-source runtime for executing LLM actions, Gorilla Execution Engine (GoEX), and present open research questions towards realizing the goal of LLMs and applications interacting with each other with minimal human supervision. We release GoEX at https://github.com/ShishirPatil/gorilla/.