Goto

Collaborating Authors

 Ponzina, Flavio


Offload Rethinking by Cloud Assistance for Efficient Environmental Sound Recognition on LPWANs

arXiv.org Artificial Intelligence

Learning-based environmental sound recognition has emerged as a crucial method for ultra-low-power environmental monitoring in biological research and city-scale sensing systems. These systems usually operate under limited resources and are often powered by harvested energy in remote areas. Recent efforts in on-device sound recognition suffer from low accuracy due to resource constraints, whereas cloud offloading strategies are hindered by high communication costs. In this work, we introduce ORCA, a novel resource-efficient cloud-assisted environmental sound recognition system on batteryless devices operating over the Low-Power Wide-Area Networks (LPWANs), targeting wide-area audio sensing applications. We propose a cloud assistance strategy that remedies the low accuracy of on-device inference while minimizing the communication costs for cloud offloading. By leveraging a self-attention-based cloud sub-spectral feature selection method to facilitate efficient on-device inference, ORCA resolves three key challenges for resource-constrained cloud offloading over LPWANs: 1) high communication costs and low data rates, 2) dynamic wireless channel conditions, and 3) unreliable offloading. We implement ORCA on an energy-harvesting batteryless microcontroller and evaluate it in a real world urban sound testbed. Our results show that ORCA outperforms state-of-the-art methods by up to $80 \times$ in energy savings and $220 \times$ in latency reduction while maintaining comparable accuracy.


MicroHD: An Accuracy-Driven Optimization of Hyperdimensional Computing Algorithms for TinyML systems

arXiv.org Artificial Intelligence

Hyperdimensional computing (HDC) is emerging as a promising AI approach that can effectively target TinyML applications thanks to its lightweight computing and memory requirements. Previous works on HDC showed that limiting the standard 10k dimensions of the hyperdimensional space to much lower values is possible, reducing even more HDC resource requirements. Similarly, other studies demonstrated that binary values can be used as elements of the generated hypervectors, leading to significant efficiency gains at the cost of some degree of accuracy degradation. Nevertheless, current optimization attempts do not concurrently co-optimize HDC hyper-parameters, and accuracy degradation is not directly controlled, resulting in sub-optimal HDC models providing several applications with unacceptable output qualities. In this work, we propose MicroHD, a novel accuracy-driven HDC optimization approach that iteratively tunes HDC hyper-parameters, reducing memory and computing requirements while ensuring user-defined accuracy levels. The proposed method can be applied to HDC implementations using different encoding functions, demonstrates good scalability for larger HDC workloads, and achieves compression and efficiency gains up to 200x when compared to baseline implementations for accuracy degradations lower than 1%.