Goto

Collaborating Authors

 Pol, Adrian Alan


Measuring the Groundedness of Legal Question-Answering Systems

arXiv.org Artificial Intelligence

In high-stakes domains like legal question-answering, the accuracy and trustworthiness of generative AI systems are of paramount importance. This work presents a comprehensive benchmark of various methods to assess the groundedness of AI-generated responses, aiming to significantly enhance their reliability. Our experiments include similarity-based metrics and natural language inference models to evaluate whether responses are well-founded in the given contexts. We also explore different prompting strategies for large language models to improve the detection of ungrounded responses. We validated the effectiveness of these methods using a newly created grounding classification corpus, designed specifically for legal queries and corresponding responses from retrieval-augmented prompting, focusing on their alignment with source material. Our results indicate potential in groundedness classification of generated responses, with the best method achieving a macro-F1 score of 0.8. Additionally, we evaluated the methods in terms of their latency to determine their suitability for real-world applications, as this step typically follows the generation process. This capability is essential for processes that may trigger additional manual verification or automated response regeneration. In summary, this study demonstrates the potential of various detection methods to improve the trustworthiness of generative AI in legal settings.


Knowledge Distillation for Anomaly Detection

arXiv.org Artificial Intelligence

Unsupervised deep learning techniques are widely used to identify anomalous behaviour. The performance of such methods is a product of the amount of training data and the model size. However, the size is often a limiting factor for the deployment on resource-constrained devices. We present a novel procedure based on knowledge distillation for compressing an unsupervised anomaly detection model into a supervised deployable one and we suggest a set of techniques to improve the detection sensitivity. Compressed models perform comparably to their larger counterparts while significantly reducing the size and memory footprint.


Towards Optimal Compression: Joint Pruning and Quantization

arXiv.org Artificial Intelligence

Model compression is instrumental in optimizing deep neural network inference on resource-constrained hardware. The prevailing methods for network compression, namely quantization and pruning, have been shown to enhance efficiency at the cost of performance. Determining the most effective quantization and pruning strategies for individual layers and parameters remains a challenging problem, often requiring computationally expensive and ad hoc numerical optimization techniques. This paper introduces FITCompress, a novel method integrating layer-wise mixed-precision quantization and unstructured pruning using a unified heuristic approach. By leveraging the Fisher Information Metric and path planning through compression space, FITCompress optimally selects a combination of pruning mask and mixed-precision quantization configuration for a given pre-trained model and compression constraint. Experiments on computer vision and natural language processing benchmarks demonstrate that our proposed approach achieves a superior compression-performance trade-off compared to existing state-of-the-art methods. FITCompress stands out for its principled derivation, making it versatile across tasks and network architectures, and represents a step towards achieving optimal compression for neural networks.


Symbolic Regression on FPGAs for Fast Machine Learning Inference

arXiv.org Artificial Intelligence

The high-energy physics community is investigating the feasibility of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs) to improve physics sensitivity while meeting data processing latency limitations. In this contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It searches equation space to discover algebraic relations approximating a dataset. We use PySR (software for uncovering these expressions based on evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in FPGAs) to support PySR -generated expressions for resource-constrained production environments. Deep learning models often optimise the top metric by pinning the network size because vast hyperparameter space prevents extensive neural architecture search. Conversely, SR selects a set of models on the Pareto front, which allows for optimising the performanceresource tradeoff directly. By embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks. We validate our procedure on a physics benchmark: multiclass classification of jets produced in simulated proton-proton collisions at the CERN Large Hadron Collider, and show that we approximate a 3-layer neural network with an inference model that has as low as 5 ns execution time (a reduction by a factor of 13) and over 90% approximation accuracy.


Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider

arXiv.org Machine Learning

Reliable data quality monitoring is a key asset in delivering collision data suitable for physics analysis in any modern large-scale High Energy Physics experiment. This paper focuses on the use of artificial neural networks for supervised and semi-supervised problems related to the identification of anomalies in the data collected by the CMS muon detectors. We use deep neural networks to analyze LHC collision data, represented as images organized geographically. We train a classifier capable of detecting the known anomalous behaviors with unprecedented efficiency and explore the usage of convolutional autoencoders to extend anomaly detection capabilities to unforeseen failure modes. A generalization of this strategy could pave the way to the automation of the data quality assessment process for present and future high-energy physics experiments.