Pohlen, Toby
Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning
Perolat, Julien, de Vylder, Bart, Hennes, Daniel, Tarassov, Eugene, Strub, Florian, de Boer, Vincent, Muller, Paul, Connor, Jerome T., Burch, Neil, Anthony, Thomas, McAleer, Stephen, Elie, Romuald, Cen, Sarah H., Wang, Zhe, Gruslys, Audrunas, Malysheva, Aleksandra, Khan, Mina, Ozair, Sherjil, Timbers, Finbarr, Pohlen, Toby, Eccles, Tom, Rowland, Mark, Lanctot, Marc, Lespiau, Jean-Baptiste, Piot, Bilal, Omidshafiei, Shayegan, Lockhart, Edward, Sifre, Laurent, Beauguerlange, Nathalie, Munos, Remi, Silver, David, Singh, Satinder, Hassabis, Demis, Tuyls, Karl
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Rae, Jack W., Borgeaud, Sebastian, Cai, Trevor, Millican, Katie, Hoffmann, Jordan, Song, Francis, Aslanides, John, Henderson, Sarah, Ring, Roman, Young, Susannah, Rutherford, Eliza, Hennigan, Tom, Menick, Jacob, Cassirer, Albin, Powell, Richard, Driessche, George van den, Hendricks, Lisa Anne, Rauh, Maribeth, Huang, Po-Sen, Glaese, Amelia, Welbl, Johannes, Dathathri, Sumanth, Huang, Saffron, Uesato, Jonathan, Mellor, John, Higgins, Irina, Creswell, Antonia, McAleese, Nat, Wu, Amy, Elsen, Erich, Jayakumar, Siddhant, Buchatskaya, Elena, Budden, David, Sutherland, Esme, Simonyan, Karen, Paganini, Michela, Sifre, Laurent, Martens, Lena, Li, Xiang Lorraine, Kuncoro, Adhiguna, Nematzadeh, Aida, Gribovskaya, Elena, Donato, Domenic, Lazaridou, Angeliki, Mensch, Arthur, Lespiau, Jean-Baptiste, Tsimpoukelli, Maria, Grigorev, Nikolai, Fritz, Doug, Sottiaux, Thibault, Pajarskas, Mantas, Pohlen, Toby, Gong, Zhitao, Toyama, Daniel, d'Autume, Cyprien de Masson, Li, Yujia, Terzi, Tayfun, Mikulik, Vladimir, Babuschkin, Igor, Clark, Aidan, Casas, Diego de Las, Guy, Aurelia, Jones, Chris, Bradbury, James, Johnson, Matthew, Hechtman, Blake, Weidinger, Laura, Gabriel, Iason, Isaac, William, Lockhart, Ed, Osindero, Simon, Rimell, Laura, Dyer, Chris, Vinyals, Oriol, Ayoub, Kareem, Stanway, Jeff, Bennett, Lorrayne, Hassabis, Demis, Kavukcuoglu, Koray, Irving, Geoffrey
Natural language communication is core to intelligence, as it allows ideas to be efficiently shared between humans or artificially intelligent systems. The generality of language allows us to express many intelligence tasks as taking in natural language input and producing natural language output. Autoregressive language modelling -- predicting the future of a text sequence from its past -- provides a simple yet powerful objective that admits formulation of numerous cognitive tasks. At the same time, it opens the door to plentiful training data: the internet, books, articles, code, and other writing. However this training objective is only an approximation to any specific goal or application, since we predict everything in the sequence rather than only the aspects we care about. Yet if we treat the resulting models with appropriate caution, we believe they will be a powerful tool to capture some of the richness of human intelligence. Using language models as an ingredient towards intelligence contrasts with their original application: transferring text over a limited-bandwidth communication channel. Shannon's Mathematical Theory of Communication (Shannon, 1948) linked the statistical modelling of natural language with compression, showing that measuring the cross entropy of a language model is equivalent to measuring its compression rate.
Neural Predictive Belief Representations
Guo, Zhaohan Daniel, Azar, Mohammad Gheshlaghi, Piot, Bilal, Pires, Bernardo A., Pohlen, Toby, Munos, Rémi
Unsupervised representation learning has succeeded with excellent results in many applications. It is an especially powerful tool to learn a good representation of environments with partial or noisy observations. In partially observable domains it is important for the representation to encode a belief state, a sufficient statistic of the observations seen so far. In this paper, we investigate whether it is possible to learn such a belief representation using modern neural architectures. Specifically, we focus on one-step frame prediction and two variants of contrastive predictive coding (CPC) as the objective functions to learn the representations. To evaluate these learned representations, we test how well they can predict various pieces of information about the underlying state of the environment, e.g., position of the agent in a 3D maze. We show that all three methods are able to learn belief representations of the environment, they encode not only the state information, but also its uncertainty, a crucial aspect of belief states. We also find that for CPC multi-step predictions and action-conditioning are critical for accurate belief representations in visually complex environments. The ability of neural representations to capture the belief information has the potential to spur new advances for learning and planning in partially observable domains, where leveraging uncertainty is essential for optimal decision making.