Plenz, Moritz
From Argumentation to Deliberation: Perspectivized Stance Vectors for Fine-grained (Dis)agreement Analysis
Plenz, Moritz, Heinisch, Philipp, Gehring, Janosch, Cimiano, Philipp, Frank, Anette
Debating over conflicting issues is a necessary first step towards resolving conflicts. However, intrinsic perspectives of an arguer are difficult to overcome by persuasive argumentation skills. Proceeding from a debate to a deliberative process, where we can identify actionable options for resolving a conflict requires a deeper analysis of arguments and the perspectives they are grounded in - as it is only from there that one can derive mutually agreeable resolution steps. In this work we develop a framework for a deliberative analysis of arguments in a computational argumentation setup. We conduct a fine-grained analysis of perspectivized stances expressed in the arguments of different arguers or stakeholders on a given issue, aiming not only to identify their opposing views, but also shared perspectives arising from their attitudes, values or needs. We formalize this analysis in Perspectivized Stance Vectors that characterize the individual perspectivized stances of all arguers on a given issue. We construct these vectors by determining issue- and argument-specific concepts, and predict an arguer's stance relative to each of them. The vectors allow us to measure a modulated (dis)agreement between arguers, structured by perspectives, which allows us to identify actionable points for conflict resolution, as a first step towards deliberation.
Graph Language Models
Plenz, Moritz, Frank, Anette
While Language Models have become workhorses for NLP, their interplay with textual knowledge graphs (KGs) - structured memories of general or domain knowledge - is actively researched. Current embedding methodologies for such graphs typically either (i) linearize graphs for embedding them using sequential Language Models (LMs), which underutilize structural information, or (ii) use Graph Neural Networks (GNNs) to preserve graph structure, while GNNs cannot represent textual features as well as a pre-trained LM could. In this work we introduce a novel language model, the Graph Language Model (GLM), that integrates the strengths of both approaches, while mitigating their weaknesses. The GLM parameters are initialized from a pretrained LM, to facilitate nuanced understanding of individual concepts and triplets. Simultaneously, its architectural design incorporates graph biases, thereby promoting effective knowledge distribution within the graph. Empirical evaluations on relation classification tasks on ConceptNet subgraphs reveal that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot settings.
Similarity-weighted Construction of Contextualized Commonsense Knowledge Graphs for Knowledge-intense Argumentation Tasks
Plenz, Moritz, Opitz, Juri, Heinisch, Philipp, Cimiano, Philipp, Frank, Anette
Arguments often do not make explicit how a conclusion follows from its premises. To compensate for this lack, we enrich arguments with structured background knowledge to support knowledge-intense argumentation tasks. We present a new unsupervised method for constructing Contextualized Commonsense Knowledge Graphs (CCKGs) that selects contextually relevant knowledge from large knowledge graphs (KGs) efficiently and at high quality. Our work goes beyond context-insensitive knowledge extraction heuristics by computing semantic similarity between KG triplets and textual arguments. Using these triplet similarities as weights, we extract contextualized knowledge paths that connect a conclusion to its premise, while maximizing similarity to the argument. We combine multiple paths into a CCKG that we optionally prune to reduce noise and raise precision. Intrinsic evaluation of the quality of our graphs shows that our method is effective for (re)constructing human explanation graphs. Manual evaluations in a large-scale knowledge selection setup confirm high recall and precision of implicit CSK in the CCKGs. Finally, we demonstrate the effectiveness of CCKGs in a knowledge-insensitive argument quality rating task, outperforming strong baselines and rivaling a GPT-3 based system.