Plantié, Michel
Overlapping Community Detection Optimization and Nash Equilibrium
Crampes, Michel, Plantié, Michel
Community detection using both graphs and social networks is the focus of many algorithms. Recent methods aimed at optimizing the so-called modularity function proceed by maximizing relations within communities while minimizing inter-community relations. However, given the NP-completeness of the problem, these algorithms are heuristics that do not guarantee an optimum. In this paper, we introduce a new algorithm along with a function that takes an approximate solution and modifies it in order to reach an optimum. This reassignment function is considered a 'potential function' and becomes a necessary condition to asserting that the computed optimum is indeed a Nash Equilibrium. We also use this function to simultaneously show partitioning and overlapping communities, two detection and visualization modes of great value in revealing interesting features of a social network. Our approach is successfully illustrated through several experiments on either real unipartite, multipartite or directed graphs of medium and large-sized datasets.
Visualizing and Interacting with Concept Hierarchies
Crampes, Michel, Plantié, Michel
Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity.