Plangprasopchok, Anon
Framework for inferring empirical causal graphs from binary data to support multidimensional poverty analysis
Amornbunchornvej, Chainarong, Surasvadi, Navaporn, Plangprasopchok, Anon, Thajchayapong, Suttipong
Poverty is one of the fundamental issues that mankind faces. To solve poverty issues, one needs to know how severe the issue is. The Multidimensional Poverty Index (MPI) is a well-known approach that is used to measure a degree of poverty issues in a given area. To compute MPI, it requires information of MPI indicators, which are \textbf{binary variables} collecting by surveys, that represent different aspects of poverty such as lacking of education, health, living conditions, etc. Inferring impacts of MPI indicators on MPI index can be solved by using traditional regression methods. However, it is not obvious that whether solving one MPI indicator might resolve or cause more issues in other MPI indicators and there is no framework dedicating to infer empirical causal relations among MPI indicators. In this work, we propose a framework to infer causal relations on binary variables in poverty surveys. Our approach performed better than baseline methods in simulated datasets that we know ground truth as well as correctly found a causal relation in the Twin births dataset. In Thailand poverty survey dataset, the framework found a causal relation between smoking and alcohol drinking issues. We provide R CRAN package `BiCausality' that can be used in any binary variables beyond the poverty analysis context.
Identifying Linear Models in Multi-Resolution Population Data using Minimum Description Length Principle to Predict Household Income
Amornbunchornvej, Chainarong, Surasvadi, Navaporn, Plangprasopchok, Anon, Thajchayapong, Suttipong
One shirt size cannot fit everybody, while we cannot make a unique shirt that fits perfectly for everyone because of resource limitation. This analogy is true for the policy making. Policy makers cannot establish a single policy to solve all problems for all regions because each region has its own unique issue. In the other extreme, policy makers also cannot create a policy for each small village due to the resource limitation. Would it be better if we can find a set of largest regions such that the population of each region within this set has common issues and we can establish a single policy for them? In this work, we propose a framework using regression analysis and minimum description length (MDL) to find a set of largest areas that have common indicators, which can be used to predict household incomes efficiently. Given a set of household features, and a multi-resolution partition that represents administrative divisions, our framework reports a set C* of largest subdivisions that have a common model for population-income prediction. We formalize a problem of finding C* and propose the algorithm as a solution. We use both simulation datasets as well as a real-world dataset of Thailand's population household information to demonstrate our framework performance and application. The results show that our framework performance is better than the baseline methods. We show the results of our method can be used to find indicators of income prediction for many areas in Thailand. By increasing these indicator values, we expect people in these areas to gain more incomes. Hence, the policy makers can plan to establish the policies by using these indicators in our results as a guideline to solve low-income issues. Our framework can be used to support policy makers to establish policies regarding any other dependent variable beyond incomes in order to combat poverty and other issues.
Constructing Folksonomies by Integrating Structured Metadata with Relational Clustering
Plangprasopchok, Anon (University of Southern California/Information Sciences Institute) | Lerman, Kristina (University of Souther California/Information Sciences Institute) | Getoor, Lise (University of Maryland, College Park)
Many social Web sites allow users to annotate the content with descriptive metadata, such as tags, and more recently also to organize content hierarchically. These types of structured metadata provide valuable evidence for learning how a community organizes knowledge. For instance, we can aggregate many personal hierarchies into a common taxonomy, also known as a folksonomy, that will aid users in visualizing and browsing social content, and also to help them in organizing their own content. However, learning from social metadata presents several challenges: sparseness, ambiguity, noise, and inconsistency. We describe an approach to folksonomy learning based on relational clustering that addresses these challenges by exploiting structured metadata contained in personal hierarchies. Our approach clusters similar hierarchies using their structure and tag statistics, then incrementally weaves them into a deeper, bushier tree. We study folksonomy learning using social metadata extracted from the photo-sharing site Flickr. We evaluate the learned folksonomy quantitatively by automatically comparing it to a reference taxonomy. Our empirical results suggest that the proposed framework, which addresses the challenges listed above, improves on existing folksonomy learning methods.
Integrating Structured Metadata with Relational Affinity Propagation
Plangprasopchok, Anon (University of Southern California/Information Sciences Institute) | Lerman, Kristina (University of Southern California/Information Sciences Institute) | Getoor, Lise (University of Maryland, College Park)
Structured and semi-structured data describing entities, taxonomies and ontologies appears in many domains. There is a huge interest in integrating structured information from multiple sources; however integrating structured data to infer complex common structures is a difficult task because the integration must aggregate similar structures while avoiding structural inconsistencies that may appear when the data is combined. In this work, we study the integration of structured social metadata: shallow personal hierarchies specified by many individual users on the Social Web, and focus on inferring a collection of integrated, consistent taxonomies. We frame this task as an optimization problem with structural constraints. We propose a new inference algorithm, which we refer to as Relational Affinity Propagation (RAP) that extends affinity propagation(Frey and Dueck, 2007) by introducing structural constraints. We validate the approach on a real-world social media dataset, collected from the photosharing website Flickr. Our empirical results show that our proposed approach is able to construct deeper and denser structures compared to an approach using only the standard affinity propagation algorithm.
Modeling Social Annotation: a Bayesian Approach
Plangprasopchok, Anon, Lerman, Kristina
Collaborative tagging systems, such as Delicious, CiteULike, and others, allow users to annotate resources, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of social annotation, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated resources. Unfortunately, that approach had one major shortcoming: the number of topics and interests must be specified a priori. To address this drawback, we extend the model to a fully Bayesian framework, which offers a way to automatically estimate these numbers. In particular, the model allows the number of interests and topics to change as suggested by the structure of the data. We evaluate the proposed model in detail on the synthetic and real-world data by comparing its performance to Latent Dirichlet Allocation on the topic extraction task. For the latter evaluation, we apply the model to infer topics of Web resources from social annotations obtained from Delicious in order to discover new resources similar to a specified one. Our empirical results demonstrate that the proposed model is a promising method for exploiting social knowledge contained in user-generated annotations.
Personalizing Image Search Results on Flickr
Lerman, Kristina, Plangprasopchok, Anon, Wong, Chio
The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., ``beetle'' could mean an insect or a car, tag search results will include many images that are not relevant to the sense the user had in mind when executing the query. We claim that users express their photography interests through the metadata they add in the form of contacts and image annotations. We show how to exploit this metadata to personalize search results for the user, thereby improving search performance. First, we show that we can significantly improve search precision by filtering tag search results by user's contacts or a larger social network that includes those contact's contacts. Secondly, we describe a probabilistic model that takes advantage of tag information to discover latent topics contained in the search results. The users' interests can similarly be described by the tags they used for annotating their images. The latent topics found by the model are then used to personalize search results by finding images on topics that are of interest to the user.
Exploiting Social Annotation for Automatic Resource Discovery
Plangprasopchok, Anon, Lerman, Kristina
Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web''-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task.