Goto

Collaborating Authors

 Pinto, Luis


Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

arXiv.org Artificial Intelligence

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.


Optimizing Encoder-Only Transformers for Session-Based Recommendation Systems

arXiv.org Artificial Intelligence

Session-based recommendation is the task of predicting the next item a user will interact with, often without access to historical user data. In this work, we introduce Sequential Masked Modeling, a novel approach for encoder-only transformer architectures to tackle the challenges of single-session recommendation. Our method combines data augmentation through window sliding with a unique penultimate token masking strategy to capture sequential dependencies more effectively. By enhancing how transformers handle session data, Sequential Masked Modeling significantly improves next-item prediction performance. We evaluate our approach on three widely-used datasets, Yoochoose 1/64, Diginetica, and Tmall, comparing it to state-of-the-art single-session, cross-session, and multi-relation approaches. The results demonstrate that our Transformer-SMM models consistently outperform all models that rely on the same amount of information, while even rivaling methods that have access to more extensive user history. This study highlights the potential of encoder-only transformers in session-based recommendation and opens the door for further improvements.