Goto

Collaborating Authors

 Pinkus, Gadi


Constructing Proofs in Symmetric Networks

Neural Information Processing Systems

This paper considers the problem of expressing predicate calculus in connectionist networksthat are based on energy minimization. Given a firstorder-logic knowledgebase and a bound k, a symmetric network is constructed (like a Boltzman machine or a Hopfield network) that searches for a proof for a given query. If a resolution-based proof of length no longer than k exists, then the global minima of the energy function that is associated with the network represent such proofs. The network that is generated is of size cubic in the bound k and linear in the knowledge size. There are no restrictions on the type of logic formulas that can be represented.


Constructing Proofs in Symmetric Networks

Neural Information Processing Systems

This paper considers the problem of expressing predicate calculus in connectionist networks that are based on energy minimization. Given a firstorder-logic knowledge base and a bound k, a symmetric network is constructed (like a Boltzman machine or a Hopfield network) that searches for a proof for a given query. If a resolution-based proof of length no longer than k exists, then the global minima of the energy function that is associated with the network represent such proofs. The network that is generated is of size cubic in the bound k and linear in the knowledge size. There are no restrictions on the type of logic formulas that can be represented.