Pill, Ingo
On the Relationship Between RNN Hidden State Vectors and Semantic Ground Truth
Muškardin, Edi, Tappler, Martin, Pill, Ingo, Aichernig, Bernhard K., Pock, Thomas
We examine the assumption that the hidden-state vectors of recurrent neural networks (RNNs) tend to form clusters of semantically similar vectors, which we dub the clustering hypothesis. While this hypothesis has been assumed in the analysis of RNNs in recent years, its validity has not been studied thoroughly on modern neural network architectures. We examine the clustering hypothesis in the context of RNNs that were trained to recognize regular languages. This enables us to draw on perfect ground-truth automata in our evaluation, against which we can compare the RNN's accuracy and the distribution of the hidden-state vectors. We start with examining the (piecewise linear) separability of an RNN's hidden-state vectors into semantically different classes. We continue the analysis by computing clusters over the hidden-state vector space with multiple state-of-the-art unsupervised clustering approaches. We formally analyze the accuracy of computed clustering functions and the validity of the clustering hypothesis by determining whether clusters group semantically similar vectors to the same state in the ground-truth model. Our evaluation supports the validity of the clustering hypothesis in the majority of examined cases. We observed that the hidden-state vectors of well-trained RNNs are separable, and that the unsupervised clustering techniques succeed in finding clusters of similar state vectors.
The Route to Success — A Performance Comparison of Diagnosis Algorithms
Nica, Iulia (Graz University of Technology) | Pill, Ingo (Graz University of Technology) | Quaritsch, Thomas (Graz University of Technology) | Wotawa, Franz (Graz University of Technology)
Diagnosis, i.e., the identification of root causes for failing or unexpected system behavior, is an important task in practice. Within the last three decades, many different AI-based solutions for solving the diagnosis problem have been presented and have been gaining in attraction. This leaves us with the question of which algorithm to prefer in a certain situation. In this paper we contribute to answering this question. In particular, we compare two classes of diagnosis algorithms. One class exploits conflicts in their search, i.e., sets of system components whose correct behavior contradicts given observations. The other class ignores conflicts and derives diagnoses from observations and the underlying model directly. In our study we use different reasoning engines ranging from an optimized Horn-clause theorem prover to general SAT and constraint solvers. Thus we also address the question whether publicly available general reasoning engines can be used for an efficient diagnosis.