Goto

Collaborating Authors

 Philip Torr


Multi-Agent Common Knowledge Reinforcement Learning

Neural Information Processing Systems

Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents' ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised coordination. Common knowledge arises naturally in a large number of decentralised cooperative multi-agent tasks, for example, when agents can reconstruct parts of each others' observations. Since agents can independently agree on their common knowledge, they can execute complex coordinated policies that condition on this knowledge in a fully decentralised fashion. We propose multiagent common knowledge reinforcement learning (MACKRL), a novel stochastic actor-critic algorithm that learns a hierarchical policy tree. Higher levels in the hierarchy coordinate groups of agents by conditioning on their common knowledge, or delegate to lower levels with smaller subgroups but potentially richer common knowledge. The entire policy tree can be executed in a fully decentralised fashion. As the lowest policy tree level consists of independent policies for each agent, MACKRL reduces to independently learnt decentralised policies as a special case. We demonstrate that our method can exploit common knowledge for superior performance on complex decentralised coordination tasks, including a stochastic matrix game and challenging problems in StarCraft II unit micromanagement.


A Unified View of Piecewise Linear Neural Network Verification

Neural Information Processing Systems

The success of Deep Learning and its potential use in many safety-critical applications has motivated research on formal verification of Neural Network (NN) models. Despite the reputation of learned NN models to behave as black boxes and the theoretical hardness of proving their properties, researchers have been successful in verifying some classes of models by exploiting their piecewise linear structure and taking insights from formal methods such as Satisifiability Modulo Theory. These methods are however still far from scaling to realistic neural networks. To facilitate progress on this crucial area, we make two key contributions. First, we present a unified framework that encompasses previous methods. This analysis results in the identification of new methods that combine the strengths of multiple existing approaches, accomplishing a speedup of two orders of magnitude compared to the previous state of the art. Second, we propose a new data set of benchmarks which includes a collection of previously released testcases. We use the benchmark to provide the first experimental comparison of existing algorithms and identify the factors impacting the hardness of verification problems.



Controllable Text-to-Image Generation

Neural Information Processing Systems

In this paper, we propose a novel controllable text-to-image generative adversarial network (ControlGAN), which can effectively synthesise high-quality images and also control parts of the image generation according to natural language descriptions. To achieve this, we introduce a word-level spatial and channel-wise attention-driven generator that can disentangle different visual attributes, and allow the model to focus on generating and manipulating subregions corresponding to the most relevant words. Also, a word-level discriminator is proposed to provide fine-grained supervisory feedback by correlating words with image regions, facilitating training an effective generator which is able to manipulate specific visual attributes without affecting the generation of other content. Furthermore, perceptual loss is adopted to reduce the randomness involved in the image generation, and to encourage the generator to manipulate specific attributes required in the modified text. Extensive experiments on benchmark datasets demonstrate that our method outperforms existing state of the art, and is able to effectively manipulate synthetic images using natural language descriptions.



Controllable Text-to-Image Generation

Neural Information Processing Systems

In this paper, we propose a novel controllable text-to-image generative adversarial network (ControlGAN), which can effectively synthesise high-quality images and also control parts of the image generation according to natural language descriptions. To achieve this, we introduce a word-level spatial and channel-wise attention-driven generator that can disentangle different visual attributes, and allow the model to focus on generating and manipulating subregions corresponding to the most relevant words. Also, a word-level discriminator is proposed to provide fine-grained supervisory feedback by correlating words with image regions, facilitating training an effective generator which is able to manipulate specific visual attributes without affecting the generation of other content. Furthermore, perceptual loss is adopted to reduce the randomness involved in the image generation, and to encourage the generator to manipulate specific attributes required in the modified text. Extensive experiments on benchmark datasets demonstrate that our method outperforms existing state of the art, and is able to effectively manipulate synthetic images using natural language descriptions.


Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models

Neural Information Processing Systems

Learning generative models that span multiple data modalities, such as vision and language, is often motivated by the desire to learn more useful, generalisable representations that faithfully capture common underlying factors between the modalities. In this work, we characterise successful learning of such models as the fulfilment of four criteria: i) implicit latent decomposition into shared and private subspaces, ii) coherent joint generation over all modalities, iii) coherent cross-generation across individual modalities, and iv) improved model learning for individual modalities through multi-modal integration. Here, we propose a mixture-of-experts multimodal variational autoencoder (MMVAE) to learn generative models on different sets of modalities, including a challenging image language dataset, and demonstrate its ability to satisfy all four criteria, both qualitatively and quantitatively. Code, data, and models are provided at this url.


Adaptive Neural Compilation

Neural Information Processing Systems

This paper proposes an adaptive neural-compilation framework to address the problem of learning efficient programs. Traditional code optimisation strategies used in compilers are based on applying pre-specified set of transformations that make the code faster to execute without changing its semantics. In contrast, our work involves adapting programs to make them more efficient while considering correctness only on a target input distribution. Our approach is inspired by the recent works on differentiable representations of programs. We show that it is possible to compile programs written in a low-level language to a differentiable representation. We also show how programs in this representation can be optimised to make them efficient on a target input distribution. Experimental results demonstrate that our approach enables learning specifically-tuned algorithms for given data distributions with a high success rate.


Learning feed-forward one-shot learners

Neural Information Processing Systems

One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a second deep network, called a learnet, which predicts the parameters of a pupil network from a single exemplar. In this manner we obtain an efficient feed-forward one-shot learner, trained end-to-end by minimizing a one-shot classification objective in a learning to learn formulation. In order to make the construction feasible, we propose a number of factorizations of the parameters of the pupil network. We demonstrate encouraging results by learning characters from single exemplars in Omniglot, and by tracking visual objects from a single initial exemplar in the Visual Object Tracking benchmark.