Pham, Trung
DimCL: Dimensional Contrastive Learning For Improving Self-Supervised Learning
Nguyen, Thanh, Pham, Trung, Zhang, Chaoning, Luu, Tung, Vu, Thang, Yoo, Chang D.
Self-supervised learning (SSL) has gained remarkable success, for which contrastive learning (CL) plays a key role. However, the recent development of new non-CL frameworks has achieved comparable or better performance with high improvement potential, prompting researchers to enhance these frameworks further. Assimilating CL into non-CL frameworks has been thought to be beneficial, but empirical evidence indicates no visible improvements. In view of that, this paper proposes a strategy of performing CL along the dimensional direction instead of along the batch direction as done in conventional contrastive learning, named Dimensional Contrastive Learning (DimCL). DimCL aims to enhance the feature diversity, and it can serve as a regularizer to prior SSL frameworks. DimCL has been found to be effective, and the hardness-aware property is identified as a critical reason for its success. Extensive experimental results reveal that assimilating DimCL into SSL frameworks leads to performance improvement by a non-trivial margin on various datasets and backbone architectures.
Robust MAML: Prioritization task buffer with adaptive learning process for model-agnostic meta-learning
Nguyen, Thanh, Luu, Tung, Pham, Trung, Rakhimkul, Sanzhar, Yoo, Chang D.
Model agnostic meta-learning (MAML) is a popular state-of-the-art meta-learning algorithm that provides good weight initialization of a model given a variety of learning tasks. The model initialized by provided weight can be fine-tuned to an unseen task despite only using a small amount of samples and within a few adaptation steps. MAML is simple and versatile but requires costly learning rate tuning and careful design of the task distribution which affects its scalability and generalization. This paper proposes a more robust MAML based on an adaptive learning scheme and a prioritization task buffer(PTB) referred to as Robust MAML (RMAML) for improving scalability of training process and alleviating the problem of distribution mismatch. RMAML uses gradient-based hyper-parameter optimization to automatically find the optimal learning rate and uses the PTB to gradually adjust train-ing task distribution toward testing task distribution over the course of training. Experimental results on meta reinforcement learning environments demonstrate a substantial performance gain as well as being less sensitive to hyper-parameter choice and robust to distribution mismatch.
A Bayesian Data Augmentation Approach for Learning Deep Models
Tran, Toan, Pham, Trung, Carneiro, Gustavo, Palmer, Lyle, Reid, Ian
Data augmentation is an essential part of the training process applied to deep learning models. The motivation is that a robust training process for deep learning models depends on large annotated datasets, which are expensive to be acquired, stored and processed. Therefore a reasonable alternative is to be able to automatically generate new annotated training samples using a process known as data augmentation. The dominant data augmentation approach in the field assumes that new training samples can be obtained via random geometric or appearance transformations applied to annotated training samples, but this is a strong assumption because it is unclear if this is a reliable generative model for producing new training samples. In this paper, we provide a novel Bayesian formulation to data augmentation, where new annotated training points are treated as missing variables and generated based on the distribution learned from the training set. For learning, we introduce a theoretically sound algorithm --- generalised Monte Carlo expectation maximisation, and demonstrate one possible implementation via an extension of the Generative Adversarial Network (GAN). Classification results on MNIST, CIFAR-10 and CIFAR-100 show the better performance of our proposed method compared to the current dominant data augmentation approach mentioned above --- the results also show that our approach produces better classification results than similar GAN models.