Goto

Collaborating Authors

 Pham, Ngoc-Quan


PIER: A Novel Metric for Evaluating What Matters in Code-Switching

arXiv.org Artificial Intelligence

Code-switching, the alternation of languages within a single discourse, presents a significant challenge for Automatic Speech Recognition. Despite the unique nature of the task, performance is commonly measured with established metrics such as Word-Error-Rate (WER). However, in this paper, we question whether these general metrics accurately assess performance on code-switching. Specifically, using both Connectionist-Temporal-Classification and Encoder-Decoder models, we show fine-tuning on non-code-switched data from both matrix and embedded language improves classical metrics on code-switching test sets, although actual code-switched words worsen (as expected). Therefore, we propose Point-of-Interest Error Rate (PIER), a variant of WER that focuses only on specific words of interest. We instantiate PIER on code-switched utterances and show that this more accurately describes the code-switching performance, showing huge room for improvement in future work. This focused evaluation allows for a more precise assessment of model performance, particularly in challenging aspects such as inter-word and intra-word code-switching.


KIT's Multilingual Speech Translation System for IWSLT 2023

arXiv.org Artificial Intelligence

Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which evaluates translation quality on scientific conference talks. The test condition features accented input speech and terminology-dense contents. The task requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.


Towards continually learning new languages

arXiv.org Artificial Intelligence

Multilingual speech recognition with neural networks is often implemented with batch-learning, when all of the languages are available before training. An ability to add new languages after the prior training sessions can be economically beneficial, but the main challenge is catastrophic forgetting. In this work, we combine the qualities of weight factorization and elastic weight consolidation in order to counter catastrophic forgetting and facilitate learning new languages quickly. Such combination allowed us to eliminate catastrophic forgetting while still achieving performance for the new languages comparable with having all languages at once, in experiments of learning from an initial 10 languages to achieve 26 languages without catastrophic forgetting and a reasonable performance compared to training all languages from scratch.