Pfreundschuh, Simon
WxC-Bench: A Novel Dataset for Weather and Climate Downstream Tasks
Shinde, Rajat, Phillips, Christopher E., Ankur, Kumar, Gupta, Aman, Pfreundschuh, Simon, Roy, Sujit, Kirkland, Sheyenne, Gaur, Vishal, Lin, Amy, Sheshadri, Aditi, Nair, Udaysankar, Maskey, Manil, Ramachandran, Rahul
High-quality machine learning (ML)-ready datasets play a foundational role in developing new artificial intelligence (AI) models or fine-tuning existing models for scientific applications such as weather and climate analysis. Unfortunately, despite the growing development of new deep learning models for weather and climate, there is a scarcity of curated, pre-processed machine learning (ML)-ready datasets. Curating such high-quality datasets for developing new models is challenging particularly because the modality of the input data varies significantly for different downstream tasks addressing different atmospheric scales (spatial and temporal). Here we introduce WxC-Bench (Weather and Climate Bench), a multi-modal dataset designed to support the development of generalizable AI models for downstream use-cases in weather and climate research. WxC-Bench is designed as a dataset of datasets for developing ML-models for a complex weather and climate system, addressing selected downstream tasks as machine learning phenomenon. WxC-Bench encompasses several atmospheric processes from meso-$\beta$ (20 - 200 km) scale to synoptic scales (2500 km), such as aviation turbulence, hurricane intensity and track monitoring, weather analog search, gravity wave parameterization, and natural language report generation. We provide a comprehensive description of the dataset and also present a technical validation for baseline analysis. The dataset and code to prepare the ML-ready data have been made publicly available on Hugging Face -- https://huggingface.co/datasets/nasa-impact/WxC-Bench
Prithvi WxC: Foundation Model for Weather and Climate
Schmude, Johannes, Roy, Sujit, Trojak, Will, Jakubik, Johannes, Civitarese, Daniel Salles, Singh, Shraddha, Kuehnert, Julian, Ankur, Kumar, Gupta, Aman, Phillips, Christopher E, Kienzler, Romeo, Szwarcman, Daniela, Gaur, Vishal, Shinde, Rajat, Lal, Rohit, Da Silva, Arlindo, Diaz, Jorge Luis Guevara, Jones, Anne, Pfreundschuh, Simon, Lin, Amy, Sheshadri, Aditi, Nair, Udaysankar, Anantharaj, Valentine, Hamann, Hendrik, Watson, Campbell, Maskey, Manil, Lee, Tsengdar J, Moreno, Juan Bernabe, Ramachandran, Rahul
Triggered by the realization that AI emulators can rival the performance of traditional numerical weather prediction models running on HPC systems, there is now an increasing number of large AI models that address use cases such as forecasting, downscaling, or nowcasting. While the parallel developments in the AI literature focus on foundation models -- models that can be effectively tuned to address multiple, different use cases -- the developments on the weather and climate side largely focus on single-use cases with particular emphasis on mid-range forecasting. We close this gap by introducing Prithvi WxC, a 2.3 billion parameter foundation model developed using 160 variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Prithvi WxC employs an encoder-decoder-based architecture, incorporating concepts from various recent transformer models to effectively capture both regional and global dependencies in the input data. The model has been designed to accommodate large token counts to model weather phenomena in different topologies at fine resolutions. Furthermore, it is trained with a mixed objective that combines the paradigms of masked reconstruction with forecasting. We test the model on a set of challenging downstream tasks namely: Autoregressive rollout forecasting, Downscaling, Gravity wave flux parameterization, and Extreme events estimation. The pretrained model with 2.3 billion parameters, along with the associated fine-tuning workflows, has been publicly released as an open-source contribution via Hugging Face.