Pfeiffer, Michael
Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
Patel, Kanil, Beluch, William, Rambach, Kilian, Cozma, Adriana-Eliza, Pfeiffer, Michael, Yang, Bin
Deep learning (DL) has recently attracted increasing interest to improve object type classification for automotive radar.In addition to high accuracy, it is crucial for decision making in autonomous vehicles to evaluate the reliability of the predictions; however, decisions of DL networks are non-transparent. Current DL research has investigated how uncertainties of predictions can be quantified, and in this article, we evaluate the potential of these methods for safe, automotive radar perception. In particular we evaluate how uncertainty quantification can support radar perception under (1) domain shift, (2) corruptions of input signals, and (3) in the presence of unknown objects. We find that in agreement with phenomena observed in the literature,deep radar classifiers are overly confident, even in their wrong predictions. This raises concerns about the use of the confidence values for decision making under uncertainty, as the model fails to notify when it cannot handle an unknown situation. Accurate confidence values would allow optimal integration of multiple information sources, e.g. via sensor fusion. We show that by applying state-of-the-art post-hoc uncertainty calibration, the quality of confidence measures can be significantly improved,thereby partially resolving the over-confidence problem. Our investigation shows that further research into training and calibrating DL networks is necessary and offers great potential for safe automotive object classification with radar sensors.
Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning
Patel, Kanil, Beluch, William, Yang, Bin, Pfeiffer, Michael, Zhang, Dan
Post-hoc calibration is a common approach for providing high-quality confidence estimates of deep neural network predictions. Recent work has shown that widely used scaling methods underestimate their calibration error, while alternative Histogram Binning (HB) methods with verifiable calibration performance often fail to preserve classification accuracy. In the case of multi-class calibration with a large number of classes K, HB also faces the issue of severe sample-inefficiency due to a large class imbalance resulting from the conversion into K one-vs-rest class-wise calibration problems. The goal of this paper is to resolve the identified issues of HB in order to provide verified and calibrated confidence estimates using only a small holdout calibration dataset for bin optimization while preserving multi-class ranking accuracy. From an information-theoretic perspective, we derive the I-Max concept for binning, which maximizes the mutual information between labels and binned (quantized) logits. This concept mitigates potential loss in ranking performance due to lossy quantization, and by disentangling the optimization of bin edges and representatives allows simultaneous improvement of ranking and calibration performance. In addition, we propose a shared class-wise (sCW) binning strategy that fits a single calibrator on the merged training sets of all K class-wise problems, yielding reliable estimates from a small calibration set. The combination of sCW and I-Max binning outperforms the state of the art calibration methods on various evaluation metrics across different benchmark datasets and models, even when using only a small set of calibration data, e.g. 1k samples for ImageNet.
Bosch Deep Learning Hardware Benchmark
Runge, Armin, Wenzel, Thomas, Bariamis, Dimitrios, Staffler, Benedikt Sebastian, Drumond, Lucas Rego, Pfeiffer, Michael
The widespread use of Deep Learning (DL) applications in science and industry has created a large demand for efficient inference systems. This has resulted in a rapid increase of available Hardware Accelerators (HWAs) making comparison challenging and laborious. To address this, several DL hardware benchmarks have been proposed aiming at a comprehensive comparison for many models, tasks, and hardware platforms. Here, we present our DL hardware benchmark which has been specifically developed for inference on embedded HWAs and tasks required for autonomous driving. In addition to previous benchmarks, we propose a new granularity level to evaluate common submodules of DL models, a twofold benchmark procedure that accounts for hardware and model optimizations done by HWA manufacturers, and an extended set of performance indicators that can help to identify a mismatch between a HWA and the DL models used in our benchmark.
Robust Anomaly Detection in Images using Adversarial Autoencoders
Beggel, Laura, Pfeiffer, Michael, Bischl, Bernd
Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.
Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences
Neil, Daniel, Pfeiffer, Michael, Liu, Shih-Chii
Recurrent Neural Networks (RNNs) have become the state-of-the-art choice for extracting patterns from temporal sequences. Current RNN models are ill suited to process irregularly sampled data triggered by events generated in continuous time by sensors or other neurons. Such data can occur, for example, when the input comes from novel event-driven artificial sensors which generate sparse, asynchronous streams of events or from multiple conventional sensors with different update intervals. In this work, we introduce the Phased LSTM model, which extends the LSTM unit by adding a new time gate. This gate is controlled by a parametrized oscillation with a frequency range which require updates of the memory cell only during a small percentage of the cycle. Even with the sparse updates imposed by the oscillation, the Phased LSTM network achieves faster convergence than regular LSTMs on tasks which require learning of long sequences. The model naturally integrates inputs from sensors of arbitrary sampling rates, thereby opening new areas of investigation for processing asynchronous sensory events that carry timing information. It also greatly improves the performance of LSTMs in standard RNN applications, and does so with an order-of-magnitude fewer computes.
Theory and Tools for the Conversion of Analog to Spiking Convolutional Neural Networks
Rueckauer, Bodo, Lungu, Iulia-Alexandra, Hu, Yuhuang, Pfeiffer, Michael
Deep convolutional neural networks (CNNs) have shown great potential for numerous real-world machine learning applications, but performing inference in large CNNs in real-time remains a challenge. We have previously demonstrated that traditional CNNs can be converted into deep spiking neural networks (SNNs), which exhibit similar accuracy while reducing both latency and computational load as a consequence of their data-driven, event-based style of computing. Here we provide a novel theory that explains why this conversion is successful, and derive from it several new tools to convert a larger and more powerful class of deep networks into SNNs. We identify the main sources of approximation errors in previous conversion methods, and propose simple mechanisms to fix these issues. Furthermore, we develop spiking implementations of common CNN operations such as max-pooling, softmax, and batch-normalization, which allow almost loss-less conversion of arbitrary CNN architectures into the spiking domain. Empirical evaluation of different network architectures on the MNIST and CIFAR10 benchmarks leads to the best SNN results reported to date.
STDP enables spiking neurons to detect hidden causes of their inputs
Nessler, Bernhard, Pfeiffer, Michael, Maass, Wolfgang
The principles by which spiking neurons contribute to the astounding computational power of generic cortical microcircuits, and how spike-timing-dependent plasticity (STDP) of synaptic weights could generate and maintain this computational function, are unknown. We show here that STDP, in conjunction with a stochastic soft winner-take-all (WTA) circuit, induces spiking neurons to generate through their synaptic weights implicit internal models for subclasses (or causes") of the high-dimensional spike patterns of hundreds of pre-synaptic neurons. Hence these neurons will fire after learning whenever the current input best matches their internal model. The resulting computational function of soft WTA circuits, a common network motif of cortical microcircuits, could therefore be a drastic dimensionality reduction of information streams, together with the autonomous creation of internal models for the probability distributions of their input patterns. We show that the autonomous generation and maintenance of this computational function can be explained on the basis of rigorous mathematical principles. In particular, we show that STDP is able to approximate a stochastic online Expectation-Maximization (EM) algorithm for modeling the input data. A corresponding result is shown for Hebbian learning in artificial neural networks."
Hebbian Learning of Bayes Optimal Decisions
Nessler, Bernhard, Pfeiffer, Michael, Maass, Wolfgang
Uncertainty is omnipresent when we perceive or interact with our environment, and the Bayesian framework provides computational methods for dealing with it. Mathematical models for Bayesian decision making typically require datastructures that are hard to implement in neural networks. This article shows that even the simplest and experimentally best supported type of synaptic plasticity, Hebbian learning, in combination with a sparse, redundant neural code, can in principle learn to infer optimal Bayesian decisions. We present a concrete Hebbian learning rule operating on log-probability ratios. Modulated by reward-signals, this Hebbian plasticity rule also provides a new perspective for understanding how Bayesian inference could support fast reinforcement learning in the brain. In particular we show that recent experimental results by Yang and Shadlen [1] on reinforcement learning of probabilistic inference in primates can be modeled in this way.