Goto

Collaborating Authors

 Peterson, Chris


ReLU Neural Networks, Polyhedral Decompositions, and Persistent Homolog

arXiv.org Artificial Intelligence

A ReLU neural network leads to a finite polyhedral decomposition of input space and a corresponding finite dual graph. We show that while this dual graph is a coarse quantization of input space, it is sufficiently robust that it can be combined with persistent homology to detect homological signals of manifolds in the input space from samples. This property holds for a variety of networks trained for a wide range of purposes that have nothing to do with this topological application. We found this feature to be surprising and interesting; we hope it will also be useful.


Monitoring the shape of weather, soundscapes, and dynamical systems: a new statistic for dimension-driven data analysis on large data sets

arXiv.org Machine Learning

Dimensionality-reduction methods are a fundamental tool in the analysis of large data sets. These algorithms work on the assumption that the "intrinsic dimension" of the data is generally much smaller than the ambient dimension in which it is collected. Alongside their usual purpose of mapping data into a smaller dimension with minimal information loss, dimensionality-reduction techniques implicitly or explicitly provide information about the dimension of the data set. In this paper, we propose a new statistic that we call the $\kappa$-profile for analysis of large data sets. The $\kappa$-profile arises from a dimensionality-reduction optimization problem: namely that of finding a projection into $k$-dimensions that optimally preserves the secants between points in the data set. From this optimal projection we extract $\kappa,$ the norm of the shortest projected secant from among the set of all normalized secants. This $\kappa$ can be computed for any $k$; thus the tuple of $\kappa$ values (indexed by dimension) becomes a $\kappa$-profile. Algorithms such as the Secant-Avoidance Projection algorithm and the Hierarchical Secant-Avoidance Projection algorithm, provide a computationally feasible means of estimating the $\kappa$-profile for large data sets, and thus a method of understanding and monitoring their behavior. As we demonstrate in this paper, the $\kappa$-profile serves as a useful statistic in several representative settings: weather data, soundscape data, and dynamical systems data.


Persistence Images: A Stable Vector Representation of Persistent Homology

arXiv.org Machine Learning

Many datasets can be viewed as a noisy sampling of an underlying space, and tools from topological data analysis can characterize this structure for the purpose of knowledge discovery. One such tool is persistent homology, which provides a multiscale description of the homological features within a dataset. A useful representation of this homological information is a persistence diagram (PD). Efforts have been made to map PDs into spaces with additional structure valuable to machine learning tasks. We convert a PD to a finite-dimensional vector representation which we call a persistence image (PI), and prove the stability of this transformation with respect to small perturbations in the inputs. The discriminatory power of PIs is compared against existing methods, showing significant performance gains. We explore the use of PIs with vector-based machine learning tools, such as linear sparse support vector machines, which identify features containing discriminating topological information. Finally, high accuracy inference of parameter values from the dynamic output of a discrete dynamical system (the linked twist map) and a partial differential equation (the anisotropic Kuramoto-Sivashinsky equation) provide a novel application of the discriminatory power of PIs.