Peter, Silvan David
Are we describing the same sound? An analysis of word embedding spaces of expressive piano performance
Peter, Silvan David, Chowdhury, Shreyan, Cancino-Chacón, Carlos Eduardo, Widmer, Gerhard
Semantic embeddings play a crucial role in natural language-based information retrieval. Embedding models represent words and contexts as vectors whose spatial configuration is derived from the distribution of words in large text corpora. While such representations are generally very powerful, they might fail to account for fine-grained domain-specific nuances. In this article, we investigate this uncertainty for the domain of characterizations of expressive piano performance. Using a music research dataset of free text performance characterizations and a follow-up study sorting the annotations into clusters, we derive a ground truth for a domain-specific semantic similarity structure. We test five embedding models and their similarity structure for correspondence with the ground truth. We further assess the effects of contextualizing prompts, hubness reduction, cross-modal similarity, and k-means clustering. The quality of embedding models shows great variability with respect to this task; more general models perform better than domain-adapted ones and the best model configurations reach human-level agreement.
Online Symbolic Music Alignment with Offline Reinforcement Learning
Peter, Silvan David
Symbolic Music Alignment is the process of matching performed MIDI notes to corresponding score notes. In this paper, we introduce a reinforcement learning (RL)-based online symbolic music alignment technique. The RL agent - an attention-based neural network - iteratively estimates the current score position from local score and performance contexts. For this symbolic alignment task, environment states can be sampled exhaustively and the reward is dense, rendering a formulation as a simplified offline RL problem straightforward. We evaluate the trained agent in three ways. First, in its capacity to identify correct score positions for sampled test contexts; second, as the core technique of a complete algorithm for symbolic online note-wise alignment; and finally, as a real-time symbolic score follower. We further investigate the pitch-based score and performance representations used as the agent's inputs. To this end, we develop a second model, a two-step Dynamic Time Warping (DTW)-based offline alignment algorithm leveraging the same input representation. The proposed model outperforms a state-of-the-art reference model of offline symbolic music alignment.