Goto

Collaborating Authors

 Pestun, Vasily


Graph2Tac: Learning Hierarchical Representations of Math Concepts in Theorem proving

arXiv.org Artificial Intelligence

Concepts abound in mathematics and its applications. They vary greatly between subject areas, and new ones are introduced in each mathematical paper or application. A formal theory builds a hierarchy of definitions, theorems and proofs that reference each other. When an AI agent is proving a new theorem, most of the mathematical concepts and lemmas relevant to that theorem may have never been seen during training. This is especially true in the Coq proof assistant, which has a diverse library of Coq projects, each with its own definitions, lemmas, and even custom tactic procedures used to prove those lemmas. It is essential for agents to incorporate such new information into their knowledge base on the fly. We work towards this goal by utilizing a new, large-scale, graph-based dataset for machine learning in Coq. We leverage a faithful graph-representation of Coq terms that induces a directed graph of dependencies between definitions to create a novel graph neural network, Graph2Tac (G2T), that takes into account not only the current goal, but also the entire hierarchy of definitions that led to the current goal. G2T is an online model that is deeply integrated into the users' workflow and can adapt in real time to new Coq projects and their definitions. It complements well with other online models that learn in real time from new proof scripts. Our novel definition embedding task, which is trained to compute representations of mathematical concepts not seen during training, boosts the performance of the neural network to rival state-of-the-art k-nearest neighbor predictors.


Transformer Models for Type Inference in the Simply Typed Lambda Calculus: A Case Study in Deep Learning for Code

arXiv.org Artificial Intelligence

Despite a growing body of work at the intersection of deep learning and formal languages, there has been relatively little systematic exploration of transformer models for reasoning about typed lambda calculi. This is an interesting area of inquiry for two reasons. First, typed lambda calculi are the lingua franc of programming languages. A set of heuristics that relate various typed lambda calculi to effective neural architectures would provide a systematic method for mapping language features (e.g., polymorphism, subtyping, inheritance, etc.) to architecture choices. Second, transformer models are widely used in deep learning architectures applied to code, but the design and hyperparameter space for them is large and relatively unexplored in programming language applications. Therefore, we suggest a benchmark that allows us to explore exactly this through perhaps the simplest and most fundamental property of a programming language: the relationship between terms and types. Consequently, we begin this inquiry of transformer architectures for typed lambda calculi by exploring the effect of transformer warm-up and optimizer selection in the task of type inference: i.e., predicting the types of lambda calculus terms using only transformers. We find that the optimization landscape is difficult even in this simple setting. One particular experimental finding is that optimization by Adafactor converges much faster compared to the optimization by Adam and RAdam. We conjecture that such different performance of optimizers might be related to the difficulties of generalization over formally generated dataset.


CertRL: Formalizing Convergence Proofs for Value and Policy Iteration in Coq

arXiv.org Artificial Intelligence

Reinforcement learning algorithms solve sequential decision-making problems in probabilistic environments by optimizing for long-term reward. The desire to use reinforcement learning in safety-critical settings inspires a recent line of work on formally constrained reinforcement learning; however, these methods place the implementation of the learning algorithm in their Trusted Computing Base. The crucial correctness property of these implementations is a guarantee that the learning algorithm converges to an optimal policy. This paper begins the work of closing this gap by developing a Coq formalization of two canonical reinforcement learning algorithms: value and policy iteration for finite state Markov decision processes. The central results are a formalization of Bellman's optimality principle and its proof, which uses a contraction property of Bellman optimality operator to establish that a sequence converges in the infinite horizon limit. The CertRL development exemplifies how the Giry monad and mechanized metric coinduction streamline optimality proofs for reinforcement learning algorithms. The CertRL library provides a general framework for proving properties about Markov decision processes and reinforcement learning algorithms, paving the way for further work on formalization of reinforcement learning algorithms.


Language as a matrix product state

arXiv.org Machine Learning

We propose a statistical model for natural language that begins by considering language as a monoid, then representing it in complex matrices with a compatible translation invariant probability measure. We interpret the probability measure as arising via the Born rule from a translation invariant matrix product state.


Tensor network language model

arXiv.org Machine Learning

We propose a new statistical model suitable for machine learning of systems with long distance correlations such as natural languages. The model is based on directed acyclic graph decorated by multi-linear tensor maps in the vertices and vector spaces in the edges, called tensor network. Such tensor networks have been previously employed for effective numerical computation of the renormalization group flow on the space of effective quantum field theories and lattice models of statistical mechanics. We provide explicit algebro-geometric analysis of the parameter moduli space for tree graphs, discuss model properties and applications such as statistical translation.