Pestov, Vladimir
A universally consistent learning rule with a universally monotone error
Pestov, Vladimir
We present a universally consistent learning rule whose expected error is monotone non-increasing with the sample size under every data distribution. The question of existence of such rules was brought up in 1996 by Devroye, Gy\"orfi and Lugosi (who called them "smart"). Our rule is fully deterministic, a data-dependent partitioning rule constructed in an arbitrary domain (a standard Borel space) using a cyclic order. The central idea is to only partition at each step those cyclic intervals that exhibit a sufficient empirical diversity of labels, thus avoiding a region where the error function is convex.
Is the k-NN classifier in high dimensions affected by the curse of dimensionality?
Pestov, Vladimir
There is an increasing body of evidence suggesting that exact nearest neighbour search in high-dimensional spaces is affected by the curse of dimensionality at a fundamental level. Does it necessarily mean that the same is true for k nearest neighbours based learning algorithms such as the k-NN classifier? We analyse this question at a number of levels and show that the answer is different at each of them. As our first main observation, we show the consistency of a k approximate nearest neighbour classifier. However, the performance of the classifier in very high dimensions is provably unstable. As our second main observation, we point out that the existing model for statistical learning is oblivious of dimension of the domain and so every learning problem admits a universally consistent deterministic reduction to the one-dimensional case by means of a Borel isomorphism.
PAC learnability under non-atomic measures: a problem by Vidyasagar
Pestov, Vladimir
In response to a 1997 problem of M. Vidyasagar, we state a criterion for PAC learnability of a concept class $\mathscr C$ under the family of all non-atomic (diffuse) measures on the domain $\Omega$. The uniform Glivenko--Cantelli property with respect to non-atomic measures is no longer a necessary condition, and consistent learnability cannot in general be expected. Our criterion is stated in terms of a combinatorial parameter $\VC({\mathscr C}\,{\mathrm{mod}}\,\omega_1)$ which we call the VC dimension of $\mathscr C$ modulo countable sets. The new parameter is obtained by "thickening up" single points in the definition of VC dimension to uncountable "clusters". Equivalently, $\VC(\mathscr C\modd\omega_1)\leq d$ if and only if every countable subclass of $\mathscr C$ has VC dimension $\leq d$ outside a countable subset of $\Omega$. The new parameter can be also expressed as the classical VC dimension of $\mathscr C$ calculated on a suitable subset of a compactification of $\Omega$. We do not make any measurability assumptions on $\mathscr C$, assuming instead the validity of Martin's Axiom (MA). Similar results are obtained for function learning in terms of fat-shattering dimension modulo countable sets, but, just like in the classical distribution-free case, the finiteness of this parameter is sufficient but not necessary for PAC learnability under non-atomic measures.