Perino, Diego
A Survey on Approximate Edge AI for Energy Efficient Autonomous Driving Services
Katare, Dewant, Perino, Diego, Nurmi, Jari, Warnier, Martijn, Janssen, Marijn, Ding, Aaron Yi
Autonomous driving services rely heavily on sensors such as cameras, LiDAR, radar, and communication modules. A common practice of processing the sensed data is using a high-performance computing unit placed inside the vehicle, which deploys AI models and algorithms to act as the brain or administrator of the vehicle. The vehicular data generated from average hours of driving can be up to 20 Terabytes depending on the data rate and specification of the sensors. Given the scale and fast growth of services for autonomous driving, it is essential to improve the overall energy and environmental efficiency, especially in the trend towards vehicular electrification (e.g., battery-powered). Although the areas have seen significant advancements in sensor technologies, wireless communications, computing and AI/ML algorithms, the challenge still exists in how to apply and integrate those technology innovations to achieve energy efficiency. This survey reviews and compares the connected vehicular applications, vehicular communications, approximation and Edge AI techniques. The focus is on energy efficiency by covering newly proposed approximation and enabling frameworks. To the best of our knowledge, this survey is the first to review the latest approximate Edge AI frameworks and publicly available datasets in energy-efficient autonomous driving. The insights and vision from this survey can be beneficial for the collaborative driving service development on low-power and memory-constrained systems and also for the energy optimization of autonomous vehicles.
P4L: Privacy Preserving Peer-to-Peer Learning for Infrastructureless Setups
Arapakis, Ioannis, Papadopoulos, Panagiotis, Katevas, Kleomenis, Perino, Diego
Distributed (or Federated) learning enables users to train machine learning models on their very own devices, while they share only the gradients of their models usually in a differentially private way (utility loss). Although such a strategy provides better privacy guarantees than the traditional centralized approach, it requires users to blindly trust a centralized infrastructure that may also become a bottleneck with the increasing number of users. In this paper, we design and implement P4L: a privacy preserving peer-to-peer learning system for users to participate in an asynchronous, collaborative learning scheme without requiring any sort of infrastructure or relying on differential privacy. Our design uses strong cryptographic primitives to preserve both the confidentiality and utility of the shared gradients, a set of peer-to-peer mechanisms for fault tolerance and user churn, proximity and cross device communications. Extensive simulations under different network settings and ML scenarios for three real-life datasets show that P4L provides competitive performance to baselines, while it is resilient to different poisoning attacks. We implement P4L and experimental results show that the performance overhead and power consumption is minimal (less than 3mAh of discharge).
Scheduling Inference Workloads on Distributed Edge Clusters with Reinforcement Learning
Castellano, Gabriele, Nieto, Juan-José, Luque, Jordi, Diego, Ferrán, Segura, Carlos, Perino, Diego, Esposito, Flavio, Risso, Fulvio, Raman, Aravindh
Many real-time applications (e.g., Augmented/Virtual Reality, cognitive assistance) rely on Deep Neural Networks (DNNs) to process inference tasks. Edge computing is considered a key infrastructure to deploy such applications, as moving computation close to the data sources enables us to meet stringent latency and throughput requirements. However, the constrained nature of edge networks poses several additional challenges to the management of inference workloads: edge clusters can not provide unlimited processing power to DNN models, and often a trade-off between network and processing time should be considered when it comes to end-to-end delay requirements. In this paper, we focus on the problem of scheduling inference queries on DNN models in edge networks at short timescales (i.e., few milliseconds). By means of simulations, we analyze several policies in the realistic network settings and workloads of a large ISP, highlighting the need for a dynamic scheduling policy that can adapt to network conditions and workloads. We therefore design ASET, a Reinforcement Learning based scheduling algorithm able to adapt its decisions according to the system conditions. Our results show that ASET effectively provides the best performance compared to static policies when scheduling over a distributed pool of edge resources.