Perez-Peña, Fernando
A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures
Quintana, Fernando M., Maryada, null, Galindo, Pedro L., Donati, Elisa, Indiveri, Giacomo, Perez-Peña, Fernando
Developing dedicated neuromorphic computing platforms optimized for embedded or edge-computing applications requires time-consuming design, fabrication, and deployment of full-custom neuromorphic processors. To ensure that initial prototyping efforts, exploring the properties of different network architectures and parameter settings, lead to realistic results it is important to use simulation frameworks that match as best as possible the properties of the final hardware. This is particularly challenging for neuromorphic hardware platforms made using mixed-signal analog/digital circuits, due to the variability and noise sensitivity of their components. In this paper, we address this challenge by developing a software spiking neural network simulator explicitly designed to account for the properties of mixed-signal neuromorphic circuits, including device mismatch variability. The simulator, called ARCANA (A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures), is designed to reproduce the dynamics of mixed-signal synapse and neuron electronic circuits with autogradient differentiation for parameter optimization and GPU acceleration. We demonstrate the effectiveness of this approach by matching software simulation results with measurements made from an existing neuromorphic processor. We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware. This framework enables the development and innovation of new learning rules and processing architectures in neuromorphic embedded systems. Keywords: SNN, DPI, neuromorphic, PyTorch, DYNAP-SE 1. Introduction Mixed-signal neuromorphic circuits emulate the neural and synaptic dynamics observed in real neural systems, reproducing features such as limited precision, heterogeneity, and high
Modelling and simulation of a commercially available dielectric elastomer actuator
Sohlbach, Lukas, Hobbani, Hamza, Blase, Chistopher, Perez-Peña, Fernando, Schmidt, Karsten
In order to fully harness the potential of dielectric elastomer actu-ators (DEAs) in soft robots, advanced control methods are need-ed. An important groundwork for this is the development of a control-oriented model that can adequately describe the underly-ing dynamics of a DEA. A common feature of existing models is that always custom-made DEAs were investigated. This makes the modelling process easier, as all specifications and the struc-ture of the actuator are well known. In the case of a commercial actuator, however, only the information from the manufacturer is available and must be checked or completed during the modelling process. The aim of this paper is to explore how a commercial stacked silicone-based DEA can be modelled and how complex the model should be to properly replicate the features of the actu-ator. The static description has demonstrated the suitability of Hooke's law. In the case of dynamic description, it is shown that no viscoelastic model is needed for control-oriented modelling. However, if all features of the DEA are considered, the general-ized Kelvin-Maxwell model with three Maxwell elements shows good results, stability and computational efficiency.
Real-time detection of uncalibrated sensors using Neural Networks
Muñoz-Molina, Luis J., Cazorla-Piñar, Ignacio, Dominguez-Morales, Juan P., Perez-Peña, Fernando
Nowadays, sensors play a major role in several contexts like science, industry and daily life which benefit of their use. However, the retrieved information must be reliable. Anomalies in the behavior of sensors can give rise to critical consequences such as ruining a scientific project or jeopardizing the quality of the production in industrial production lines. One of the more subtle kind of anomalies are uncalibrations. An uncalibration is said to take place when the sensor is not adjusted or standardized by calibration according to a ground truth value. In this work, an online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed. This solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions. Then, after trained and deployed, it detects uncalibrations once they take place. The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively. This solution can be adapted to different contexts by means of transfer learning, whose application allows for the addition of new sensors, the deployment into new environments and the retraining of the model with minimum amounts of data.
Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of legged robots
Lopez-Osorio, Pablo, Patino-Saucedo, Alberto, Dominguez-Morales, Juan P., Rostro-Gonzalez, Horacio, Perez-Peña, Fernando
In recent years, locomotion mechanisms exhibited by vertebrate animals have been the inspiration for the improvement in the performance of robotic systems. These mechanisms include the adaptability of their locomotion to any change registered in the environment through their biological sensors. In this regard, we aim to replicate such kind of adaptability in legged robots through a Spiking Central Pattern Generator. This Spiking Central Pattern Generator generates different locomotion (rhythmic) patterns which are driven by an external stimulus, that is, the output of a Force Sensitive Resistor connected to the robot to provide feedback. The Spiking Central Pattern Generator consists of a network of five populations of Leaky Integrate-and-Fire neurons designed with a specific topology in such a way that the rhythmic patterns can be generated and driven by the aforementioned external stimulus. Therefore, the locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input. The Spiking Central Pattern Generator with adaptive learning has been numerically validated at software and hardware level, using the Brian 2 simulator and the SpiNNaker neuromorphic platform for the latest. In particular, our experiments clearly show an adaptation in the oscillation frequencies between the spikes produced in the populations of the Spiking Central Pattern Generator while the input stimulus varies. To validate the robustness and adaptability of the Spiking Central Pattern Generator, we have performed several tests by variating the output of the sensor. These experiments were carried out in Brian 2 and SpiNNaker; both implementations showed a similar behavior with a Pearson correlation coefficient of 0.905.