Goto

Collaborating Authors

 Perera, Charith


A Circular Construction Product Ontology for End-of-Life Decision-Making

arXiv.org Artificial Intelligence

Efficient management of end-of-life (EoL) products is critical for advancing circularity in supply chains, particularly within the construction industry where EoL strategies are hindered by heterogenous lifecycle data and data silos. Current tools like Environmental Product Declarations (EPDs) and Digital Product Passports (DPPs) are limited by their dependency on seamless data integration and interoperability which remain significant challenges. To address these, we present the Circular Construction Product Ontology (CCPO), an applied framework designed to overcome semantic and data heterogeneity challenges in EoL decision-making for construction products. CCPO standardises vocabulary and facilitates data integration across supply chain stakeholders enabling lifecycle assessments (LCA) and robust decision-making. By aggregating disparate data into a unified product provenance, CCPO enables automated EoL recommendations through customisable SWRL rules aligned with European standards and stakeholder-specific circularity SLAs, demonstrating its scalability and integration capabilities. The adopted circular product scenario depicts CCPO's application while competency question evaluations show its superior performance in generating accurate EoL suggestions highlighting its potential to greatly improve decision-making in circular supply chains and its applicability in real-world construction environments.


Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models

arXiv.org Artificial Intelligence

Despite the recent broad adoption of Large Language Models (LLMs) across various domains, their potential for enriching information systems in extracting and exploring Linked Data (LD) and Resource Description Framework (RDF) triplestores has not been extensively explored. This paper examines the integration of LLMs within existing systems, emphasising the enhancement of conversational user interfaces (UIs) and their capabilities for data extraction by producing more accurate SPARQL queries without the requirement for model retraining. Typically, conversational UI models necessitate retraining with the introduction of new datasets or updates, limiting their functionality as general-purpose extraction tools. Our approach addresses this limitation by incorporating LLMs into the conversational UI workflow, significantly enhancing their ability to comprehend and process user queries effectively. By leveraging the advanced natural language understanding capabilities of LLMs, our method improves RDF entity extraction within web systems employing conventional chatbots. This integration facilitates a more nuanced and context-aware interaction model, critical for handling the complex query patterns often encountered in RDF datasets and Linked Open Data (LOD) endpoints. The evaluation of this methodology shows a marked enhancement in system expressivity and the accuracy of responses to user queries, indicating a promising direction for future research in this area. This investigation not only underscores the versatility of LLMs in enhancing existing information systems but also sets the stage for further explorations into their potential applications within more specialised domains of web information systems.


Data-driven Air Quality Characterisation for Urban Environments: a Case Study

arXiv.org Machine Learning

The economic and social impact of poor air quality in towns and cities is increasingly being recognised, together with the need for effective ways of creating awareness of real-time air quality levels and their impact on human health. With local authority maintained monitoring stations being geographically sparse and the resultant datasets also featuring missing labels, computational data-driven mechanisms are needed to address the data sparsity challenge. In this paper, we propose a machine learning-based method to accurately predict the Air Quality Index (AQI), using environmental monitoring data together with meteorological measurements. To do so, we develop an air quality estimation framework that implements a neural network that is enhanced with a novel Non-linear Autoregressive neural network with exogenous input (NARX), especially designed for time series prediction. The framework is applied to a case study featuring different monitoring sites in London, with comparisons against other standard machine-learning based predictive algorithms showing the feasibility and robust performance of the proposed method for different kinds of areas within an urban region.


A Unified Knowledge Representation and Context-aware Recommender System in Internet of Things

arXiv.org Artificial Intelligence

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.