Peng, Yifan
ESPnet-SDS: Unified Toolkit and Demo for Spoken Dialogue Systems
Arora, Siddhant, Peng, Yifan, Shi, Jiatong, Tian, Jinchuan, Chen, William, Bharadwaj, Shikhar, Futami, Hayato, Kashiwagi, Yosuke, Tsunoo, Emiru, Shimizu, Shuichiro, Srivastav, Vaibhav, Watanabe, Shinji
Advancements in audio foundation models (FMs) have fueled interest in end-to-end (E2E) spoken dialogue systems, but different web interfaces for each system makes it challenging to compare and contrast them effectively. Motivated by this, we introduce an open-source, user-friendly toolkit designed to build unified web interfaces for various cascaded and E2E spoken dialogue systems. Our demo further provides users with the option to get on-the-fly automated evaluation metrics such as (1) latency, (2) ability to understand user input, (3) coherence, diversity, and relevance of system response, and (4) intelligibility and audio quality of system output. Using the evaluation metrics, we compare various cascaded and E2E spoken dialogue systems with a human-human conversation dataset as a proxy. Our analysis demonstrates that the toolkit allows researchers to effortlessly compare and contrast different technologies, providing valuable insights such as current E2E systems having poorer audio quality and less diverse responses. An example demo produced using our toolkit is publicly available here: https://huggingface.co/spaces/Siddhant/Voice_Assistant_Demo.
ESPnet-SpeechLM: An Open Speech Language Model Toolkit
Tian, Jinchuan, Shi, Jiatong, Chen, William, Arora, Siddhant, Masuyama, Yoshiki, Maekaku, Takashi, Wu, Yihan, Peng, Junyi, Bharadwaj, Shikhar, Zhao, Yiwen, Cornell, Samuele, Peng, Yifan, Yue, Xiang, Yang, Chao-Han Huck, Neubig, Graham, Watanabe, Shinji
We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.
OWLS: Scaling Laws for Multilingual Speech Recognition and Translation Models
Chen, William, Tian, Jinchuan, Peng, Yifan, Yan, Brian, Yang, Chao-Han Huck, Watanabe, Shinji
Neural scaling laws offer valuable insights for designing robust sequence processing architectures. While these laws have been extensively characterized in other modalities, their behavior in speech remains comparatively underexplored. In this work, we introduce OWLS, an open-access, reproducible suite of multilingual speech recognition and translation models spanning 0.25B to 18B parameters, with the 18B version being the largest speech model, to the best of our knowledge. OWLS leverages up to 360K hours of public speech data across 150 languages, enabling a systematic investigation into how data, model, and compute scaling each influence performance in multilingual speech tasks. We use OWLS to derive neural scaling laws, showing how final performance can be reliably predicted when scaling. One of our key findings is that scaling enhances performance on low-resource languages/dialects, helping to mitigate bias and improve the accessibility of speech technologies. Finally, we show how OWLS can be used to power new research directions by discovering emergent abilities in large-scale speech models. Model checkpoints will be released on https://huggingface.co/collections/espnet/owls-scaling-laws-for-speech-recognition-and-translation-67ab7f991c194065f057ce8d for future studies.
WatchGuardian: Enabling User-Defined Personalized Just-in-Time Intervention on Smartwatch
Lei, Ying, Cao, Yancheng, Wang, Will, Dong, Yuanzhe, Yin, Changchang, Cao, Weidan, Zhang, Ping, Yang, Jingzhen, Yao, Bingsheng, Peng, Yifan, Weng, Chunhua, Auerbach, Randy, Mamykina, Lena, Wang, Dakuo, Wang, Yuntao, Xu, Xuhai
While just-in-time interventions (JITIs) have effectively targeted common health behaviors, individuals often have unique needs to intervene in personal undesirable actions that can negatively affect physical, mental, and social well-being. We present WatchGuardian, a smartwatch-based JITI system that empowers users to define custom interventions for these personal actions with a small number of samples. For the model to detect new actions based on limited new data samples, we developed a few-shot learning pipeline that finetuned a pre-trained inertial measurement unit (IMU) model on public hand-gesture datasets. We then designed a data augmentation and synthesis process to train additional classification layers for customization. Our offline evaluation with 26 participants showed that with three, five, and ten examples, our approach achieved an average accuracy of 76.8%, 84.7%, and 87.7%, and an F1 score of 74.8%, 84.2%, and 87.2% We then conducted a four-hour intervention study to compare WatchGuardian against a rule-based intervention. Our results demonstrated that our system led to a significant reduction by 64.0 +- 22.6% in undesirable actions, substantially outperforming the baseline by 29.0%. Our findings underscore the effectiveness of a customizable, AI-driven JITI system for individuals in need of behavioral intervention in personal undesirable actions. We envision that our work can inspire broader applications of user-defined personalized intervention with advanced AI solutions.
A foundation model for human-AI collaboration in medical literature mining
Wang, Zifeng, Cao, Lang, Jin, Qiao, Chan, Joey, Wan, Nicholas, Afzali, Behdad, Cho, Hyun-Jin, Choi, Chang-In, Emamverdi, Mehdi, Gill, Manjot K., Kim, Sun-Hyung, Li, Yijia, Liu, Yi, Ong, Hanley, Rousseau, Justin, Sheikh, Irfan, Wei, Jenny J., Xu, Ziyang, Zallek, Christopher M., Kim, Kyungsang, Peng, Yifan, Lu, Zhiyong, Sun, Jimeng
Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.
Semi-Supervised Learning from Small Annotated Data and Large Unlabeled Data for Fine-grained PICO Entity Recognition
Chen, Fangyi, Zhang, Gongbo, Fang, Yilu, Peng, Yifan, Weng, Chunhua
Objective: Extracting PICO elements -- Participants, Intervention, Comparison, and Outcomes -- from clinical trial literature is essential for clinical evidence retrieval, appraisal, and synthesis. Existing approaches do not distinguish the attributes of PICO entities. This study aims to develop a named entity recognition (NER) model to extract PICO entities with fine granularities. Materials and Methods: Using a corpus of 2,511 abstracts with PICO mentions from 4 public datasets, we developed a semi-supervised method to facilitate the training of a NER model, FinePICO, by combining limited annotated data of PICO entities and abundant unlabeled data. For evaluation, we divided the entire dataset into two subsets: a smaller group with annotations and a larger group without annotations. We then established the theoretical lower and upper performance bounds based on the performance of supervised learning models trained solely on the small, annotated subset and on the entire set with complete annotations, respectively. Finally, we evaluated FinePICO on both the smaller annotated subset and the larger, initially unannotated subset. We measured the performance of FinePICO using precision, recall, and F1. Results: Our method achieved precision/recall/F1 of 0.567/0.636/0.60, respectively, using a small set of annotated samples, outperforming the baseline model (F1: 0.437) by more than 16\%. The model demonstrates generalizability to a different PICO framework and to another corpus, which consistently outperforms the benchmark in diverse experimental settings (p-value \textless0.001). Conclusion: This study contributes a generalizable and effective semi-supervised approach to named entity recognition leveraging large unlabeled data together with small, annotated data. It also initially supports fine-grained PICO extraction.
KunServe: Elastic and Efficient Large Language Model Serving with Parameter-centric Memory Management
Cheng, Rongxin, Peng, Yifan, Lai, Yuxin, Wei, Xingda, Chen, Rong, Chen, Haibo
The stateful nature of large language model (LLM) servingcan easily throttle precious GPU memory under load burstor long-generation requests like chain-of-thought reasoning,causing latency spikes due to queuing incoming requests. However, state-of-the-art KVCache centric approaches handleload spikes by dropping, migrating, or swapping KVCache,which faces an essential tradeoff between the performance ofongoing vs. incoming requests and thus still severely violatesSLO.This paper makes a key observation such that model param-eters are independent of the requests and are replicated acrossGPUs, and thus proposes a parameter-centric approach byselectively dropping replicated parameters to leave preciousmemory for requests. However, LLM requires KVCache tobe saved in bound with model parameters and thus droppingparameters can cause either huge computation waste or longnetwork delay, affecting all ongoing requests. Based on the ob-servation that attention operators can be decoupled from otheroperators, this paper further proposes a novel remote attentionmechanism through pipeline parallelism so as to serve up-coming requests with the additional memory borrowed fromparameters on remote GPUs. This paper further addresses sev-eral other challenges including lively exchanging KVCachewith incomplete parameters, generating an appropriate planthat balances memory requirements with cooperative exe-cution overhead, and seamlessly restoring parameters whenthe throttling has gone. Evaluations show thatKUNSERVEreduces the tail TTFT of requests under throttling by up to 27.3x compared to the state-of-the-art.
Enhancing Audiovisual Speech Recognition through Bifocal Preference Optimization
Wu, Yihan, Lu, Yichen, Peng, Yifan, Wang, Xihua, Song, Ruihua, Watanabe, Shinji
Audiovisual Automatic Speech Recognition (AV-ASR) aims to improve speech recognition accuracy by leveraging visual signals. It is particularly challenging in unconstrained real-world scenarios across various domains due to noisy acoustic environments, spontaneous speech, and the uncertain use of visual information. Most previous works fine-tune audio-only ASR models on audiovisual datasets, optimizing them for conventional ASR objectives. However, they often neglect visual features and common errors in unconstrained video scenarios. In this paper, we propose using a preference optimization strategy to improve speech recognition accuracy for real-world videos. First, we create preference data via simulating common errors that occurred in AV-ASR from two focals: manipulating the audio or vision input and rewriting the output transcript. Second, we propose BPO-AVASR, a Bifocal Preference Optimization method to improve AV-ASR models by leveraging both input-side and output-side preference. Extensive experiments demonstrate that our approach significantly improves speech recognition accuracy across various domains, outperforming previous state-of-the-art models on real-world video speech recognition.
A MapReduce Approach to Effectively Utilize Long Context Information in Retrieval Augmented Language Models
Zhang, Gongbo, Xu, Zihan, Jin, Qiao, Chen, Fangyi, Fang, Yilu, Liu, Yi, Rousseau, Justin F., Xu, Ziyang, Lu, Zhiyong, Weng, Chunhua, Peng, Yifan
While holding great promise for improving and facilitating healthcare, large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination. Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses by integrating LLMs with a search engine and external sources of knowledge. However, the quality of RAG responses can be largely impacted by the rank and density of key information in the retrieval results, such as the "lost-in-the-middle" problem. In this work, we aim to improve the robustness and reliability of the RAG workflow in the medical domain. Specifically, we propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights. We demonstrated the advantage of the workflow with various LLM backbones and on multiple QA datasets. This method promises to improve the safety and reliability of LLMs deployed in healthcare domains.
Suicide Risk Assessment on Social Media with Semi-Supervised Learning
Lovitt, Max, Ma, Haotian, Wang, Song, Peng, Yifan
With social media communities increasingly becoming places where suicidal individuals post and congregate, natural language processing presents an exciting avenue for the development of automated suicide risk assessment systems. However, past efforts suffer from a lack of labeled data and class imbalances within the available labeled data. To accommodate this task's imperfect data landscape, we propose a semi-supervised framework that leverages labeled (n=500) and unlabeled (n=1,500) data and expands upon the self-training algorithm with a novel pseudo-label acquisition process designed to handle imbalanced datasets. To further ensure pseudo-label quality, we manually verify a subset of the pseudo-labeled data that was not predicted unanimously across multiple trials of pseudo-label generation. We test various models to serve as the backbone for this framework, ultimately deciding that RoBERTa performs the best. Ultimately, by leveraging partially validated pseudo-labeled data in addition to ground-truth labeled data, we substantially improve our model's ability to assess suicide risk from social media posts.