Peng, Xiaojiang
MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification
Xu, Zhaopan, Zhou, Pengfei, Ai, Jiaxin, Zhao, Wangbo, Wang, Kai, Peng, Xiaojiang, Shao, Wenqi, Yao, Hongxun, Zhang, Kaipeng
Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.
Faster Vision Mamba is Rebuilt in Minutes via Merged Token Re-training
Shi, Mingjia, Zhou, Yuhao, Yu, Ruiji, Li, Zekai, Liang, Zhiyuan, Zhao, Xuanlei, Peng, Xiaojiang, Rajpurohit, Tanmay, Vedantam, Shanmukha Ramakrishna, Zhao, Wangbo, Wang, Kai, You, Yang
Vision Mamba (e.g., Vim) has successfully been integrated into computer vision, and token reduction has yielded promising outcomes in Vision Transformers (ViTs). However, token reduction performs less effectively on Vision Mamba compared to ViTs. Pruning informative tokens in Mamba leads to a high loss of key knowledge and bad performance. This makes it not a good solution for enhancing efficiency in Mamba. Token merging, which preserves more token information than pruning, has demonstrated commendable performance in ViTs. Nevertheless, vanilla merging performance decreases as the reduction ratio increases either, failing to maintain the key knowledge in Mamba. Re-training the token-reduced model enhances the performance of Mamba, by effectively rebuilding the key knowledge. Empirically, pruned Vims only drop up to 0.9% accuracy on ImageNet-1K, recovered by our proposed framework R-MeeTo in our main evaluation. We show how simple and effective the fast recovery can be achieved at minute-level, in particular, a 35.9% accuracy spike over 3 epochs of training on Vim-Ti. Moreover, Vim-Ti/S/B are re-trained within 5/7/17 minutes, and Vim-S only drop 1.3% with 1.2x (up to 1.5x) speed up in inference.
Rethinking Structure Learning For Graph Neural Networks
Zheng, Yilun, Zhang, Zhuofan, Wang, Ziming, Li, Xiang, Luan, Sitao, Peng, Xiaojiang, Chen, Lihui
To improve the performance of Graph Neural Networks (GNNs), Graph Structure Learning (GSL) has been extensively applied to reconstruct or refine original graph structures, effectively addressing issues like heterophily, over-squashing, and noisy structures. While GSL is generally thought to improve GNN performance, it often leads to longer training times and more hyperparameter tuning. Besides, the distinctions among current GSL methods remain ambiguous from the perspective of GNN training, and there is a lack of theoretical analysis to quantify their effectiveness. Recent studies further suggest that, under fair comparisons with the same hyperparameter tuning, GSL does not consistently outperform baseline GNNs. This motivates us to ask a critical question: is GSL really useful for GNNs? To address this question, this paper makes two key contributions. First, we propose a new GSL framework, which includes three steps: GSL base (the representation used for GSL) construction, new structure construction, and view fusion, to better understand the effectiveness of GSL in GNNs. Second, after graph convolution, we analyze the differences in mutual information (MI) between node representations derived from the original topology and those from the newly constructed topology. Surprisingly, our empirical observations and theoretical analysis show that no matter which type of graph structure construction methods are used, after feeding the same GSL bases to the newly constructed graph, there is no MI gain compared to the original GSL bases. To fairly reassess the effectiveness of GSL, we conduct ablation experiments and find that it is the pretrained GSL bases that enhance GNN performance, and in most cases, GSL cannot improve GNN performance. This finding encourages us to rethink the essential components in GNNs, such as self-training and structural encoding, in GNN design rather than GSL.
Is Graph Convolution Always Beneficial For Every Feature?
Zheng, Yilun, Li, Xiang, Luan, Sitao, Peng, Xiaojiang, Chen, Lihui
Graph Neural Networks (GNNs) have demonstrated strong capabilities in processing structured data. While traditional GNNs typically treat each feature dimension equally during graph convolution, we raise an important question: Is the graph convolution operation equally beneficial for each feature? If not, the convolution operation on certain feature dimensions can possibly lead to harmful effects, even worse than the convolution-free models. In prior studies, to assess the impacts of graph convolution on features, people proposed metrics based on feature homophily to measure feature consistency with the graph topology. However, these metrics have shown unsatisfactory alignment with GNN performance and have not been effectively employed to guide feature selection in GNNs. To address these limitations, we introduce a novel metric, Topological Feature Informativeness (TFI), to distinguish between GNN-favored and GNN-disfavored features, where its effectiveness is validated through both theoretical analysis and empirical observations. Based on TFI, we propose a simple yet effective Graph Feature Selection (GFS) method, which processes GNN-favored and GNN-disfavored features separately, using GNNs and non-GNN models. Compared to original GNNs, GFS significantly improves the extraction of useful topological information from each feature with comparable computational costs. Extensive experiments show that after applying GFS to 8 baseline and state-of-the-art (SOTA) GNN architectures across 10 datasets, 83.75% of the GFS-augmented cases show significant performance boosts. Furthermore, our proposed TFI metric outperforms other feature selection methods. These results validate the effectiveness of both GFS and TFI. Additionally, we demonstrate that GFS's improvements are robust to hyperparameter tuning, highlighting its potential as a universal method for enhancing various GNN architectures.
Dataset Growth
Qin, Ziheng, Xu, Zhaopan, Zhou, Yukun, Zheng, Zangwei, Cheng, Zebang, Tang, Hao, Shang, Lei, Sun, Baigui, Peng, Xiaojiang, Timofte, Radu, Yao, Hongxun, Wang, Kai, You, Yang
Meanwhile, efficiently dealing with the growing data scale has become a challenge. Data publicly available are from different sources with various qualities, and it is impractical to do manual cleaning against noise and redundancy given today's data scale. There are existing techniques for cleaning/selecting the collected data. However, these methods are mainly proposed for offline settings that target one of the cleanness and redundancy problems. In practice, data are growing exponentially with both problems. This leads to repeated data curation with sub-optimal efficiency. To tackle this challenge, we propose InfoGrowth, an efficient online algorithm for data cleaning and selection, resulting in a growing dataset that keeps up to date with awareness of cleanliness and diversity. InfoGrowth can improve data quality/efficiency on both single-modal and multi-modal tasks, with an efficient and scalable design. Its framework makes it practical for real-world data engines.
A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model Training
Wang, Kai, Zhou, Yukun, Shi, Mingjia, Yuan, Zhihang, Shang, Yuzhang, Peng, Xiaojiang, Zhang, Hanwang, You, Yang
Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called, which is based on a closer look at time steps. Our key findings are: i) Time steps can be empirically divided into acceleration, deceleration, and convergence areas based on the process increment. ii) These time steps are imbalanced, with many concentrated in the convergence area. iii) The concentrated steps provide limited benefits for diffusion training. To address this, we design an asymmetric sampling strategy that reduces the frequency of steps from the convergence area while increasing the sampling probability for steps from other areas. Additionally, we propose a weighting strategy to emphasize the importance of time steps with rapid-change process increments. As a plug-and-play and architecture-agnostic approach, SpeeD consistently achieves 3-times acceleration across various diffusion architectures, datasets, and tasks. Notably, due to its simple design, our approach significantly reduces the cost of diffusion model training with minimal overhead. Our research enables more researchers to train diffusion models at a lower cost.
MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis
Li, Xiang, Cheng, Zhi-Qi, He, Jun-Yan, Peng, Xiaojiang, Hauptmann, Alexander G.
Emotional Text-to-Speech (E-TTS) synthesis has gained significant attention in recent years due to its potential to enhance human-computer interaction. However, current E-TTS approaches often struggle to capture the complexity of human emotions, primarily relying on oversimplified emotional labels or single-modality inputs. To address these limitations, we propose the Multimodal Emotional Text-to-Speech System (MM-TTS), a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. MM-TTS consists of two key components: (1) the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information; and (2) the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations across diverse datasets demonstrate the superior performance of MM-TTS compared to traditional E-TTS models. Objective metrics, including Word Error Rate (WER) and Character Error Rate (CER), show significant improvements on ESD dataset, with MM-TTS achieving scores of 7.35% and 3.07%, respectively. Subjective assessments further validate that MM-TTS generates speech with emotional fidelity and naturalness comparable to human speech. Our code and pre-trained models are publicly available at https://anonymous.4open.science/r/MMTTS-D214
MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models
Cheng, Zebang, Niu, Fuqiang, Lin, Yuxiang, Cheng, Zhi-Qi, Zhang, Bowen, Peng, Xiaojiang
This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git
A Challenge Dataset and Effective Models for Conversational Stance Detection
Niu, Fuqiang, Yang, Min, Li, Ang, Zhang, Baoquan, Peng, Xiaojiang, Zhang, Bowen
Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{https://github.com/nfq729/MT-CSD}.
CaT-GNN: Enhancing Credit Card Fraud Detection via Causal Temporal Graph Neural Networks
Duan, Yifan, Zhang, Guibin, Wang, Shilong, Peng, Xiaojiang, Ziqi, Wang, Mao, Junyuan, Wu, Hao, Jiang, Xinke, Wang, Kun
Credit card fraud poses a significant threat to the economy. While Graph Neural Network (GNN)-based fraud detection methods perform well, they often overlook the causal effect of a node's local structure on predictions. This paper introduces a novel method for credit card fraud detection, the \textbf{\underline{Ca}}usal \textbf{\underline{T}}emporal \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{N}etwork (CaT-GNN), which leverages causal invariant learning to reveal inherent correlations within transaction data. By decomposing the problem into discovery and intervention phases, CaT-GNN identifies causal nodes within the transaction graph and applies a causal mixup strategy to enhance the model's robustness and interpretability. CaT-GNN consists of two key components: Causal-Inspector and Causal-Intervener. The Causal-Inspector utilizes attention weights in the temporal attention mechanism to identify causal and environment nodes without introducing additional parameters. Subsequently, the Causal-Intervener performs a causal mixup enhancement on environment nodes based on the set of nodes. Evaluated on three datasets, including a private financial dataset and two public datasets, CaT-GNN demonstrates superior performance over existing state-of-the-art methods. Our findings highlight the potential of integrating causal reasoning with graph neural networks to improve fraud detection capabilities in financial transactions.