Peng, Xi
Improving Representation Learning of Complex Critical Care Data with ICU-BERT
Santos, Ricardo, Carreiro, André V., Peng, Xi, Gamboa, Hugo, Fröhlich, Holger
The multivariate, asynchronous nature of real-world clinical data, such as that generated in Intensive Care Units (ICUs), challenges traditional AI-based decision-support systems. These often assume data regularity and feature independence and frequently rely on limited data scopes and manual feature engineering. The potential of generative AI technologies has not yet been fully exploited to analyze clinical data. We introduce ICU-BERT, a transformer-based model pre-trained on the MIMIC-IV database using a multi-task scheme to learn robust representations of complex ICU data with minimal preprocessing. ICU-BERT employs a multi-token input strategy, incorporating dense embeddings from a biomedical Large Language Model to learn a generalizable representation of complex and multivariate ICU data. With an initial evaluation of five tasks and four additional ICU datasets, ICU-BERT results indicate that ICU-BERT either compares to or surpasses current performance benchmarks by leveraging fine-tuning. By integrating structured and unstructured data, ICU-BERT advances the use of foundational models in medical informatics, offering an adaptable solution for clinical decision support across diverse applications.
DiFiC: Your Diffusion Model Holds the Secret to Fine-Grained Clustering
Yang, Ruohong, Hu, Peng, Peng, Xi, Liu, Xiting, Li, Yunfan
Fine-grained clustering is a practical yet challenging task, whose essence lies in capturing the subtle differences between instances of different classes. Such subtle differences can be easily disrupted by data augmentation or be overwhelmed by redundant information in data, leading to significant performance degradation for existing clustering methods. In this work, we introduce DiFiC a fine-grained clustering method building upon the conditional diffusion model. Distinct from existing works that focus on extracting discriminative features from images, DiFiC resorts to deducing the textual conditions used for image generation. To distill more precise and clustering-favorable object semantics, DiFiC further regularizes the diffusion target and guides the distillation process utilizing neighborhood similarity. Extensive experiments demonstrate that DiFiC outperforms both state-of-the-art discriminative and generative clustering methods on four fine-grained image clustering benchmarks. We hope the success of DiFiC will inspire future research to unlock the potential of diffusion models in tasks beyond generation. The code will be released.
Beyond Accuracy: On the Effects of Fine-tuning Towards Vision-Language Model's Prediction Rationality
Wang, Qitong, Li, Tang, Nguyen, Kien X., Peng, Xi
Vision-Language Models (VLMs), such as CLIP, have already seen widespread applications. Researchers actively engage in further fine-tuning VLMs in safety-critical domains. In these domains, prediction rationality is crucial: the prediction should be correct and based on valid evidence. Yet, for VLMs, the impact of fine-tuning on prediction rationality is seldomly investigated. To study this problem, we proposed two new metrics called Prediction Trustworthiness and Inference Reliability. We conducted extensive experiments on various settings and observed some interesting phenomena. On the one hand, we found that the well-adopted fine-tuning methods led to more correct predictions based on invalid evidence. This potentially undermines the trustworthiness of correct predictions from fine-tuned VLMs. On the other hand, having identified valid evidence of target objects, fine-tuned VLMs were more likely to make correct predictions. Moreover, the findings are also consistent under distributional shifts and across various experimental settings. We hope our research offer fresh insights to VLM fine-tuning.
Out-Of-Distribution Detection with Diversification (Provably)
Yao, Haiyun, Han, Zongbo, Fu, Huazhu, Peng, Xi, Hu, Qinghua, Zhang, Changqing
Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment of machine learning models. Recent advancements focus on utilizing easily accessible auxiliary outliers (e.g., data from the web or other datasets) in training. However, we experimentally reveal that these methods still struggle to generalize their detection capabilities to unknown OOD data, due to the limited diversity of the auxiliary outliers collected. Therefore, we thoroughly examine this problem from the generalization perspective and demonstrate that a more diverse set of auxiliary outliers is essential for enhancing the detection capabilities. However, in practice, it is difficult and costly to collect sufficiently diverse auxiliary outlier data. Therefore, we propose a simple yet practical approach with a theoretical guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix), which enhances the diversity of auxiliary outlier set for training in an efficient way. Extensive experiments show that diverseMix achieves superior performance on commonly used and recent challenging large-scale benchmarks, which further confirm the importance of the diversity of auxiliary outliers.
Self-Supervised Conditional Distribution Learning on Graphs
Chen, Jie, Mao, Hua, Gou, Yuanbiao, Wang, Zhu, Peng, Xi
Graph contrastive learning (GCL) has shown promising performance in semisupervised graph classification. However, existing studies still encounter significant challenges in GCL. First, successive layers in graph neural network (GNN) tend to produce more similar node embeddings, while GCL aims to increase the dissimilarity between negative pairs of node embeddings. This inevitably results in a conflict between the message-passing mechanism of GNNs and the contrastive learning of negative pairs via intraviews. Second, leveraging the diversity and quantity of data provided by graph-structured data augmentations while preserving intrinsic semantic information is challenging. In this paper, we propose a self-supervised conditional distribution learning (SSCDL) method designed to learn graph representations from graph-structured data for semisupervised graph classification. Specifically, we present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features. This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation. To avoid conflict between the message-passing mechanism and contrastive learning of negative pairs, positive pairs of node representations are retained for measuring the similarity between the original features and the corresponding weakly augmented features. Extensive experiments with several benchmark graph datasets demonstrate the effectiveness of the proposed SSCDL method.
SeafloorAI: A Large-scale Vision-Language Dataset for Seafloor Geological Survey
Nguyen, Kien X., Qiao, Fengchun, Trembanis, Arthur, Peng, Xi
A major obstacle to the advancements of machine learning models in marine science, particularly in sonar imagery analysis, is the scarcity of AI-ready datasets. While there have been efforts to make AI-ready sonar image dataset publicly available, they suffer from limitations in terms of environment setting and scale. To bridge this gap, we introduce SeafloorAI, the first extensive AI-ready datasets for seafloor mapping across 5 geological layers that is curated in collaboration with marine scientists. We further extend the dataset to SeafloorGenAI by incorporating the language component in order to facilitate the development of both vision- and language-capable machine learning models for sonar imagery. The dataset consists of 62 geo-distributed data surveys spanning 17,300 square kilometers, with 696K sonar images, 827K annotated segmentation masks, 696K detailed language descriptions and approximately 7M question-answer pairs. By making our data processing source code publicly available, we aim to engage the marine science community to enrich the data pool and inspire the machine learning community to develop more robust models. This collaborative approach will enhance the capabilities and applications of our datasets within both fields.
Beyond Accuracy: Ensuring Correct Predictions With Correct Rationales
Li, Tang, Ma, Mengmeng, Peng, Xi
Large pretrained foundation models demonstrate exceptional performance and, in some high-stakes applications, even surpass human experts. However, most of these models are currently evaluated primarily on prediction accuracy, overlooking the validity of the rationales behind their accurate predictions. For the safe deployment of foundation models, there is a pressing need to ensure double-correct predictions, i.e., correct prediction backed by correct rationales. To achieve this, we propose a two-phase scheme: First, we curate a new dataset that offers structured rationales for visual recognition tasks. Second, we propose a rationale-informed optimization method to guide the model in disentangling and localizing visual evidence for each rationale, without requiring manual annotations. Extensive experiments and ablation studies demonstrate that our model outperforms state-of-the-art models by up to 10.1% in prediction accuracy across a wide range of tasks. Furthermore, our method significantly improves the model's rationale correctness, improving localization by 7.5% and disentanglement by 36.5%.
Test-time Adaptation for Cross-modal Retrieval with Query Shift
Li, Haobin, Hu, Peng, Zhang, Qianjun, Peng, Xi, Liu, Xiting, Yang, Mouxing
The success of most existing cross-modal retrieval methods heavily relies on the assumption that the given queries follow the same distribution of the source domain. However, such an assumption is easily violated in real-world scenarios due to the complexity and diversity of queries, thus leading to the query shift problem. Specifically, query shift refers to the online query stream originating from the domain that follows a different distribution with the source one. In this paper, we observe that query shift would not only diminish the uniformity (namely, within-modality scatter) of the query modality but also amplify the gap between query and gallery modalities. Based on the observations, we propose a novel method dubbed Test-time adaptation for Cross-modal Retrieval (TCR). In brief, TCR employs a novel module to refine the query predictions (namely, retrieval results of the query) and a joint objective to prevent query shift from disturbing the common space, thus achieving online adaptation for the cross-modal retrieval models with query shift. Expensive experiments demonstrate the effectiveness of the proposed TCR against query shift. The code will be released upon acceptance.
Adaptive Cascading Network for Continual Test-Time Adaptation
Nguyen, Kien X., Qiao, Fengchun, Peng, Xi
We study the problem of continual test-time adaption where the goal is to adapt a source pre-trained model to a sequence of unlabelled target domains at test time. Existing methods on test-time training suffer from several limitations: (1) Mismatch between the feature extractor and classifier; (2) Interference between the main and self-supervised tasks; (3) Lack of the ability to quickly adapt to the current distribution. In light of these challenges, we propose a cascading paradigm that simultaneously updates the feature extractor and classifier at test time, mitigating the mismatch between them and enabling long-term model adaptation. The pre-training of our model is structured within a meta-learning framework, thereby minimizing the interference between the main and self-supervised tasks and encouraging fast adaptation in the presence of limited unlabelled data. Additionally, we introduce innovative evaluation metrics, average accuracy and forward transfer, to effectively measure the model's adaptation capabilities in dynamic, real-world scenarios. Extensive experiments and ablation studies demonstrate the superiority of our approach in a range of tasks including image classification, text classification, and speech recognition.
Beyond the Federation: Topology-aware Federated Learning for Generalization to Unseen Clients
Ma, Mengmeng, Li, Tang, Peng, Xi
Federated Learning is widely employed to tackle distributed sensitive data. Existing methods primarily focus on addressing in-federation data heterogeneity. However, we observed that they suffer from significant performance degradation when applied to unseen clients for out-of-federation (OOF) generalization. The recent attempts to address generalization to unseen clients generally struggle to scale up to large-scale distributed settings due to high communication or computation costs. Moreover, methods that scale well often demonstrate poor generalization capability. To achieve OOF-resiliency in a scalable manner, we propose Topology-aware Federated Learning (TFL) that leverages client topology - a graph representing client relationships - to effectively train robust models against OOF data. We formulate a novel optimization problem for TFL, consisting of two key modules: Client Topology Learning, which infers the client relationships in a privacy-preserving manner, and Learning on Client Topology, which leverages the learned topology to identify influential clients and harness this information into the FL optimization process to efficiently build robust models. Empirical evaluation on a variety of real-world datasets verifies TFL's superior OOF robustness and scalability.