Not enough data to create a plot.
Try a different view from the menu above.
Peng, Wei
Generation of 3D Molecules in Pockets via Language Model
Feng, Wei, Wang, Lvwei, Lin, Zaiyun, Zhu, Yanhao, Wang, Han, Dong, Jianqiang, Bai, Rong, Wang, Huting, Zhou, Jielong, Peng, Wei, Huang, Bo, Zhou, Wenbiao
Generative models for molecules based on sequential line notation (e.g. SMILES) or graph representation have attracted an increasing interest in the field of structure-based drug design, but they struggle to capture important 3D spatial interactions and often produce undesirable molecular structures. To address these challenges, we introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology. A new molecular representation, fragment-based SMILES with local and global coordinates, was developed to assist the model in learning molecular topologies and atomic spatial positions. Additionally, we trained a separate noncovalent interaction predictor to provide essential binding pattern information for the generative model. Lingo3DMol can efficiently traverse drug-like chemical spaces, preventing the formation of unusual structures. The Directory of Useful Decoys-Enhanced (DUD-E) dataset was used for evaluation. Lingo3DMol outperformed state-of-the-art methods in terms of drug-likeness, synthetic accessibility, pocket binding mode, and molecule generation speed.
Align before Adapt: Leveraging Entity-to-Region Alignments for Generalizable Video Action Recognition
Chen, Yifei, Chen, Dapeng, Liu, Ruijin, Zhou, Sai, Xue, Wenyuan, Peng, Wei
Large-scale visual-language pre-trained models have achieved significant success in various video tasks. However, most existing methods follow an "adapt then align" paradigm, which adapts pre-trained image encoders to model video-level representations and utilizes one-hot or text embedding of the action labels for supervision. This paradigm overlooks the challenge of mapping from static images to complicated activity concepts. In this paper, we propose a novel "Align before Adapt" (ALT) paradigm. Prior to adapting to video representation learning, we exploit the entity-to-region alignments for each frame. The alignments are fulfilled by matching the region-aware image embeddings to an offline-constructed text corpus. With the aligned entities, we feed their text embeddings to a transformer-based video adapter as the queries, which can help extract the semantics of the most important entities from a video to a vector. This paradigm reuses the visual-language alignment of VLP during adaptation and tries to explain an action by the underlying entities. This helps understand actions by bridging the gap with complex activity semantics, particularly when facing unfamiliar or unseen categories. ALT achieves competitive performance and superior generalizability while requiring significantly low computational costs. In fully supervised scenarios, it achieves 88.1% top-1 accuracy on Kinetics-400 with only 4947 GFLOPs. In 2-shot experiments, ALT outperforms the previous state-of-the-art by 7.1% and 9.2% on HMDB-51 and UCF-101, respectively.
IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn Response Selection
Deng, Jingcheng, Dai, Hengwei, Guo, Xuewei, Ju, Yuanchen, Peng, Wei
The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.
Assessing the Reliability of Large Language Model Knowledge
Wang, Weixuan, Haddow, Barry, Birch, Alexandra, Peng, Wei
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks. LLMs are typically evaluated using accuracy, yet this metric does not capture the vulnerability of LLMs to hallucination-inducing factors like prompt and context variability. How do we evaluate the capabilities of LLMs to consistently produce factually correct answers? In this paper, we propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability. MONITOR computes the distance between the probability distributions of a valid output and its counterparts produced by the same LLM probing the same fact using different styles of prompts and contexts.Experiments on a comprehensive range of 12 LLMs demonstrate the effectiveness of MONITOR in evaluating the factual reliability of LLMs while maintaining a low computational overhead. In addition, we release the FKTC (Factual Knowledge Test Corpus) test set, containing 210,158 prompts in total to foster research along this line (https://github.com/Vicky-Wil/MONITOR).
Neuro-Symbolic Recommendation Model based on Logic Query
Wu, Maonian, Chen, Bang, Zhu, Shaojun, Zheng, Bo, Peng, Wei, Zhang, Mingyi
A recommendation system assists users in finding items that are relevant to them. Existing recommendation models are primarily based on predicting relationships between users and items and use complex matching models or incorporate extensive external information to capture association patterns in data. However, recommendation is not only a problem of inductive statistics using data; it is also a cognitive task of reasoning decisions based on knowledge extracted from information. Hence, a logic system could naturally be incorporated for the reasoning in a recommendation task. However, although hard-rule approaches based on logic systems can provide powerful reasoning ability, they struggle to cope with inconsistent and incomplete knowledge in real-world tasks, especially for complex tasks such as recommendation. Therefore, in this paper, we propose a neuro-symbolic recommendation model, which transforms the user history interactions into a logic expression and then transforms the recommendation prediction into a query task based on this logic expression. The logic expressions are then computed based on the modular logic operations of the neural network. We also construct an implicit logic encoder to reasonably reduce the complexity of the logic computation. Finally, a user's interest items can be queried in the vector space based on the computation results. Experiments on three well-known datasets verified that our method performs better compared to state of the art shallow, deep, session, and reasoning models.
Imputing Brain Measurements Across Data Sets via Graph Neural Networks
Wang, Yixin, Peng, Wei, Tapert, Susan F., Zhao, Qingyu, Pohl, Kilian M.
Publicly available data sets of structural MRIs might not contain specific measurements of brain Regions of Interests (ROIs) that are important for training machine learning models. For example, the curvature scores computed by Freesurfer are not released by the Adolescent Brain Cognitive Development (ABCD) Study. One can address this issue by simply reapplying Freesurfer to the data set. However, this approach is generally computationally and labor intensive (e.g., requiring quality control). An alternative is to impute the missing measurements via a deep learning approach. However, the state-of-the-art is designed to estimate randomly missing values rather than entire measurements. We therefore propose to re-frame the imputation problem as a prediction task on another (public) data set that contains the missing measurements and shares some ROI measurements with the data sets of interest. A deep learning model is then trained to predict the missing measurements from the shared ones and afterwards is applied to the other data sets. Our proposed algorithm models the dependencies between ROI measurements via a graph neural network (GNN) and accounts for demographic differences in brain measurements (e.g. sex) by feeding the graph encoding into a parallel architecture. The architecture simultaneously optimizes a graph decoder to impute values and a classifier in predicting demographic factors. We test the approach, called Demographic Aware Graph-based Imputation (DAGI), on imputing those missing Freesurfer measurements of ABCD (N=3760) by training the predictor on those publicly released by the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA, N=540)...
Neural-Symbolic Recommendation with Graph-Enhanced Information
Chen, Bang, Peng, Wei, Wu, Maonian, Zheng, Bo, Zhu, Shaojun
The recommendation system is not only a problem of inductive statistics from data but also a cognitive task that requires reasoning ability. The most advanced graph neural networks have been widely used in recommendation systems because they can capture implicit structured information from graph-structured data. However, like most neural network algorithms, they only learn matching patterns from a perception perspective. Some researchers use user behavior for logic reasoning to achieve recommendation prediction from the perspective of cognitive reasoning, but this kind of reasoning is a local one and ignores implicit information on a global scale. In this work, we combine the advantages of graph neural networks and propositional logic operations to construct a neuro-symbolic recommendation model with both global implicit reasoning ability and local explicit logic reasoning ability. We first build an item-item graph based on the principle of adjacent interaction and use graph neural networks to capture implicit information in global data. Then we transform user behavior into propositional logic expressions to achieve recommendations from the perspective of cognitive reasoning.
Hyperbolic Uncertainty Aware Semantic Segmentation
Chen, Bike, Peng, Wei, Cao, Xiaofeng, Rรถning, Juha
Semantic segmentation (SS) aims to classify each pixel into one of the pre-defined classes. This task plays an important role in self-driving cars and autonomous drones. In SS, many works have shown that most misclassified pixels are commonly near object boundaries with high uncertainties. However, existing SS loss functions are not tailored to handle these uncertain pixels during training, as these pixels are usually treated equally as confidently classified pixels and cannot be embedded with arbitrary low distortion in Euclidean space, thereby degenerating the performance of SS. To overcome this problem, this paper designs a "Hyperbolic Uncertainty Loss" (HyperUL), which dynamically highlights the misclassified and high-uncertainty pixels in Hyperbolic space during training via the hyperbolic distances. The proposed HyperUL is model agnostic and can be easily applied to various neural architectures. After employing HyperUL to three recent SS models, the experimental results on Cityscapes and UAVid datasets reveal that the segmentation performance of existing SS models can be consistently improved.
Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
Kamali, Danial, Romain, Joseph, Liu, Huiyi, Peng, Wei, Meng, Jingbo, Kordjamshidi, Parisa
The spread of misinformation is a prominent problem in today's society, and many researchers in academia and industry are trying to combat it. Due to the vast amount of misinformation that is created every day, it is unrealistic to leave this task to human fact-checkers. Data scientists and researchers have been working on automated misinformation detection for years, and it is still a challenging problem today. The goal of our research is to add a new level to automated misinformation detection; classifying segments of text with persuasive writing techniques in order to produce interpretable reasoning for why an article can be marked as misinformation. To accomplish this, we present a novel annotation scheme containing many common persuasive writing tactics, along with a dataset with human annotations accordingly. For this task, we make use of a RoBERTa model for text classification, due to its high performance in NLP. We develop several language model-based baselines and present the results of our persuasive strategy label predictions as well as the improvements these intermediate labels make in detecting misinformation and producing interpretable results.
Learning Homographic Disambiguation Representation for Neural Machine Translation
Wang, Weixuan, Peng, Wei, Liu, Qun
Homographs, words with the same spelling but different meanings, remain challenging in Neural Machine Translation (NMT). While recent works leverage various word embedding approaches to differentiate word sense in NMT, they do not focus on the pivotal components in resolving ambiguities of homographs in NMT: the hidden states of an encoder. In this paper, we propose a novel approach to tackle homographic issues of NMT in the latent space. We first train an encoder (aka "HDR-encoder") to learn universal sentence representations in a natural language inference (NLI) task. We further fine-tune the encoder using homograph-based synset sentences from WordNet, enabling it to learn word-level homographic disambiguation representations (HDR). The pre-trained HDR-encoder is subsequently integrated with a transformer-based NMT in various schemes to improve translation accuracy. Experiments on four translation directions demonstrate the effectiveness of the proposed method in enhancing the performance of NMT systems in the BLEU scores (up to +2.3 compared to a solid baseline). The effects can be verified by other metrics (F1, precision, and recall) of translation accuracy in an additional disambiguation task. Visualization methods like heatmaps, T-SNE and translation examples are also utilized to demonstrate the effects of the proposed method.