Goto

Collaborating Authors

 Peng, Tianshuo


HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States

arXiv.org Artificial Intelligence

The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.


GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training

arXiv.org Artificial Intelligence

Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.


Multi-modal Auto-regressive Modeling via Visual Words

arXiv.org Artificial Intelligence

Large Language Models (LLMs), benefiting from the auto-regressive modelling approach performed on massive unannotated texts corpora, demonstrates powerful perceptual and reasoning capabilities. However, as for extending auto-regressive modelling to multi-modal scenarios to build Large Multi-modal Models (LMMs), there lies a great difficulty that the image information is processed in the LMM as continuous visual embeddings, which cannot obtain discrete supervised labels for classification. In this paper, we successfully perform multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.


A Novel Energy based Model Mechanism for Multi-modal Aspect-Based Sentiment Analysis

arXiv.org Artificial Intelligence

Multi-modal aspect-based sentiment analysis (MABSA) has recently attracted increasing attention. The span-based extraction methods, such as FSUIE, demonstrate strong performance in sentiment analysis due to their joint modeling of input sequences and target labels. However, previous methods still have certain limitations: (i) They ignore the difference in the focus of visual information between different analysis targets (aspect or sentiment). (ii) Combining features from uni-modal encoders directly may not be sufficient to eliminate the modal gap and can cause difficulties in capturing the image-text pairwise relevance. (iii) Existing span-based methods for MABSA ignore the pairwise relevance of target span boundaries. To tackle these limitations, we propose a novel framework called DQPSA for multi-modal sentiment analysis. Specifically, our model contains a Prompt as Dual Query (PDQ) module that uses the prompt as both a visual query and a language query to extract prompt-aware visual information and strengthen the pairwise relevance between visual information and the analysis target. Additionally, we introduce an Energy-based Pairwise Expert (EPE) module that models the boundaries pairing of the analysis target from the perspective of an Energy-based Model. This expert predicts aspect or sentiment span based on pairwise stability. Experiments on three widely used benchmarks demonstrate that DQPSA outperforms previous approaches and achieves a new state-of-the-art performance.


FSUIE: A Novel Fuzzy Span Mechanism for Universal Information Extraction

arXiv.org Artificial Intelligence

Universal Information Extraction (UIE) has been introduced as a unified framework for various Information Extraction (IE) tasks and has achieved widespread success. Despite this, UIE models have limitations. For example, they rely heavily on span boundaries in the data during training, which does not reflect the reality of span annotation challenges. Slight adjustments to positions can also meet requirements. Additionally, UIE models lack attention to the limited span length feature in IE. To address these deficiencies, we propose the Fuzzy Span Universal Information Extraction (FSUIE) framework. Specifically, our contribution consists of two concepts: fuzzy span loss and fuzzy span attention. Our experimental results on a series of main IE tasks show significant improvement compared to the baseline, especially in terms of fast convergence and strong performance with small amounts of data and training epochs. These results demonstrate the effectiveness and generalization of FSUIE in different tasks, settings, and scenarios.