Goto

Collaborating Authors

 Peng, Jiawei


Learnable In-Context Vector for Visual Question Answering

arXiv.org Artificial Intelligence

As language models continue to scale, Large Language Models (LLMs) have exhibited emerging capabilities in In-Context Learning (ICL), enabling them to solve language tasks by prefixing a few in-context demonstrations (ICDs) as context. Inspired by these advancements, researchers have extended these techniques to develop Large Multimodal Models (LMMs) with ICL capabilities. However, applying ICL usually faces two major challenges: 1) using more ICDs will largely increase the inference time and 2) the performance is sensitive to the selection of ICDs. These challenges are further exacerbated in LMMs due to the integration of multiple data types and the combinational complexity of multimodal ICDs. Recently, to address these challenges, some NLP studies introduce non-learnable In-Context Vectors (ICVs) which extract useful task information from ICDs into a single vector and then insert it into the LLM to help solve the corresponding task. However, although useful in simple NLP tasks, these non-learnable methods fail to handle complex multimodal tasks like Visual Question Answering (VQA). In this study, we propose \textbf{Learnable ICV} (L-ICV) to distill essential task information from demonstrations, improving ICL performance in LMMs. Experiments show that L-ICV can significantly reduce computational costs while enhancing accuracy in VQA tasks compared to traditional ICL and other non-learnable ICV methods.


How to Configure Good In-Context Sequence for Visual Question Answering

arXiv.org Artificial Intelligence

Inspired by the success of Large Language Models in dealing with new tasks via In-Context Learning (ICL) in NLP, researchers have also developed Large Vision-Language Models (LVLMs) with ICL capabilities. However, when implementing ICL using these LVLMs, researchers usually resort to the simplest way like random sampling to configure the in-context sequence, thus leading to sub-optimal results. To enhance the ICL performance, in this study, we use Visual Question Answering (VQA) as case study to explore diverse in-context configurations to find the powerful ones. Additionally, through observing the changes of the LVLM outputs by altering the in-context sequence, we gain insights into the inner properties of LVLMs, improving our understanding of them. Specifically, to explore in-context configurations, we design diverse retrieval methods and employ different strategies to manipulate the retrieved demonstrations. Through exhaustive experiments on three VQA datasets: VQAv2, VizWiz, and OK-VQA, we uncover three important inner properties of the applied LVLM and demonstrate which strategies can consistently improve the ICL VQA performance. Our code is provided in: https://github.com/GaryJiajia/OFv2_ICL_VQA.


Animal3D: A Comprehensive Dataset of 3D Animal Pose and Shape

arXiv.org Artificial Intelligence

Accurately estimating the 3D pose and shape is an essential step towards understanding animal behavior, and can potentially benefit many downstream applications, such as wildlife conservation. However, research in this area is held back by the lack of a comprehensive and diverse dataset with high-quality 3D pose and shape annotations. In this paper, we propose Animal3D, the first comprehensive dataset for mammal animal 3D pose and shape estimation. Animal3D consists of 3379 images collected from 40 mammal species, high-quality annotations of 26 keypoints, and importantly the pose and shape parameters of the SMAL model. All annotations were labeled and checked manually in a multi-stage process to ensure highest quality results. Based on the Animal3D dataset, we benchmark representative shape and pose estimation models at: (1) supervised learning from only the Animal3D data, (2) synthetic to real transfer from synthetically generated images, and (3) fine-tuning human pose and shape estimation models. Our experimental results demonstrate that predicting the 3D shape and pose of animals across species remains a very challenging task, despite significant advances in human pose estimation. Our results further demonstrate that synthetic pre-training is a viable strategy to boost the model performance. Overall, Animal3D opens new directions for facilitating future research in animal 3D pose and shape estimation, and is publicly available.


Enhancing Language Representation with Constructional Information for Natural Language Understanding

arXiv.org Artificial Intelligence

Natural language understanding (NLU) is an essential branch of natural language processing, which relies on representations generated by pre-trained language models (PLMs). However, PLMs primarily focus on acquiring lexico-semantic information, while they may be unable to adequately handle the meaning of constructions. To address this issue, we introduce construction grammar (CxG), which highlights the pairings of form and meaning, to enrich language representation. We adopt usage-based construction grammar as the basis of our work, which is highly compatible with statistical models such as PLMs. Then a HyCxG framework is proposed to enhance language representation through a three-stage solution. First, all constructions are extracted from sentences via a slot-constraints approach. As constructions can overlap with each other, bringing redundancy and imbalance, we formulate the conditional max coverage problem for selecting the discriminative constructions. Finally, we propose a relational hypergraph attention network to acquire representation from constructional information by capturing high-order word interactions among constructions. Extensive experiments demonstrate the superiority of the proposed model on a variety of NLU tasks.


FCGEC: Fine-Grained Corpus for Chinese Grammatical Error Correction

arXiv.org Artificial Intelligence

Grammatical Error Correction (GEC) has been broadly applied in automatic correction and proofreading system recently. However, it is still immature in Chinese GEC due to limited high-quality data from native speakers in terms of category and scale. In this paper, we present FCGEC, a fine-grained corpus to detect, identify and correct the grammatical errors. FCGEC is a human-annotated corpus with multiple references, consisting of 41,340 sentences collected mainly from multi-choice questions in public school Chinese examinations. Furthermore, we propose a Switch-Tagger-Generator (STG) baseline model to correct the grammatical errors in low-resource settings. Compared to other GEC benchmark models, experimental results illustrate that STG outperforms them on our FCGEC. However, there exists a significant gap between benchmark models and humans that encourages future models to bridge it.