Peng, Fu
Reliable Robustness Evaluation via Automatically Constructed Attack Ensembles
Liu, Shengcai, Peng, Fu, Tang, Ke
Attack Ensemble (AE), which combines multiple attacks together, provides a reliable way to evaluate adversarial robustness. In practice, AEs are often constructed and tuned by human experts, which however tends to be sub-optimal and time-consuming. In this work, we present AutoAE, a conceptually simple approach for automatically constructing AEs. In brief, AutoAE repeatedly adds the attack and its iteration steps to the ensemble that maximizes ensemble improvement per additional iteration consumed. We show theoretically that AutoAE yields AEs provably within a constant factor of the optimal for a given defense. We then use AutoAE to construct two AEs for $l_{\infty}$ and $l_2$ attacks, and apply them without any tuning or adaptation to 45 top adversarial defenses on the RobustBench leaderboard. In all except one cases we achieve equal or better (often the latter) robustness evaluation than existing AEs, and notably, in 29 cases we achieve better robustness evaluation than the best known one. Such performance of AutoAE shows itself as a reliable evaluation protocol for adversarial robustness, which further indicates the huge potential of automatic AE construction. Code is available at \url{https://github.com/LeegerPENG/AutoAE}.
Training Quantized Deep Neural Networks via Cooperative Coevolution
Peng, Fu, Liu, Shengcai, Tang, Ke
This work considers a challenging Deep Neural Network (DNN) quantization task that seeks to train quantized DNNs without involving any full-precision operations. Most previous quantization approaches are not applicable to this task since they rely on full-precision gradients to update network weights. To fill this gap, in this work we advocate using Evolutionary Algorithms (EAs) to search for the optimal low-bits weights of DNNs. To efficiently solve the induced large-scale discrete problem, we propose a novel EA based on cooperative coevolution that repeatedly groups the network weights (variables) based on the confidence in their values and focuses on optimizing the ones with the least confidence. To the best of our knowledge, this is the first work that applies EAs to train quantized DNNs. Experiments show that our approach surpasses previous quantization approaches and can train a 4-bit ResNet-20 on the Cifar-10 dataset with the same test accuracy as its full-precision counterpart.