Peng, Dezhong
Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation
Wu, Wenyuan, Liu, Zheng, Chen, Yong, Su, Chao, Peng, Dezhong, Wang, Xu
In recent years, the rapid development of deep neural networks has brought increased attention to the security and robustness of these models. While existing adversarial attack algorithms have demonstrated success in improving adversarial transferability, their performance remains suboptimal due to a lack of consideration for the discrepancies between target and source models. To address this limitation, we propose a novel method, Inverse Knowledge Distillation (IKD), designed to enhance adversarial transferability effectively. IKD introduces a distillation-inspired loss function that seamlessly integrates with gradient-based attack methods, promoting diversity in attack gradients and mitigating overfitting to specific model architectures. By diversifying gradients, IKD enables the generation of adversarial samples with superior generalization capabilities across different models, significantly enhancing their effectiveness in black-box attack scenarios.
ROUTE: Robust Multitask Tuning and Collaboration for Text-to-SQL
Qin, Yang, Chen, Chao, Fu, Zhihang, Chen, Ze, Peng, Dezhong, Hu, Peng, Ye, Jieping
Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by large language models (LLMs), the latest state-of-the-art techniques are still trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which limits their applicability in open scenarios. Our approach begins with multi-task supervised fine-tuning (SFT) using various synthetic training data related to SQL generation. Unlike existing SFT-based Text2SQL methods, we introduced several additional SFT tasks, including schema linking, noise correction, and continuation writing. Engaging in a variety of SQL generation tasks enhances the model's understanding of SQL syntax and improves its ability to generate high-quality SQL queries. Additionally, inspired by the collaborative modes of LLM agents, we introduce a Multitask Collaboration Prompting (MCP) strategy. This strategy leverages collaboration across several SQL-related tasks to reduce hallucinations during SQL generation, thereby maximizing the potential of enhancing Text2SQL performance through explicit multitask capabilities. Extensive experiments and in-depth analyses have been performed on eight open-source LLMs and five widely-used benchmarks. The results demonstrate that our proposal outperforms the latest Text2SQL methods and yields promising performance. The code and data are available here. Text2SQL has emerged as a popular and practical technology for question answering based on largescale databases, serving as a crucial link between natural language and database systems (Zhang et al., 2024). Recently, Large Language Models (LLMs) have proven to be an effective solution in Text2SQL (Pourreza & Rafiei, 2024a).
PointCloud-Text Matching: Benchmark Datasets and a Baseline
Feng, Yanglin, Qin, Yang, Peng, Dezhong, Zhu, Hongyuan, Peng, Xi, Hu, Peng
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
Cross-modal Active Complementary Learning with Self-refining Correspondence
Qin, Yang, Sun, Yuan, Peng, Dezhong, Zhou, Joey Tianyi, Peng, Xi, Hu, Peng
Recently, image-text matching has attracted more and more attention from academia and industry, which is fundamental to understanding the latent correspondence across visual and textual modalities. However, most existing methods implicitly assume the training pairs are well-aligned while ignoring the ubiquitous annotation noise, a.k.a noisy correspondence (NC), thereby inevitably leading to a performance drop. Although some methods attempt to address such noise, they still face two challenging problems: excessive memorizing/overfitting and unreliable correction for NC, especially under high noise. To address the two problems, we propose a generalized Cross-modal Robust Complementary Learning framework (CRCL), which benefits from a novel Active Complementary Loss (ACL) and an efficient Self-refining Correspondence Correction (SCC) to improve the robustness of existing methods. Specifically, ACL exploits active and complementary learning losses to reduce the risk of providing erroneous supervision, leading to theoretically and experimentally demonstrated robustness against NC. SCC utilizes multiple self-refining processes with momentum correction to enlarge the receptive field for correcting correspondences, thereby alleviating error accumulation and achieving accurate and stable corrections. We carry out extensive experiments on three image-text benchmarks, i.e., Flickr30K, MS-COCO, and CC152K, to verify the superior robustness of our CRCL against synthetic and real-world noisy correspondences. Code is available at https://github.com/QinYang79/CRCL.
Image Clustering with External Guidance
Li, Yunfan, Hu, Peng, Peng, Dezhong, Lv, Jiancheng, Fan, Jianping, Peng, Xi
The core of clustering is incorporating prior knowledge to construct supervision signals. From classic k-means based on data compactness to recent contrastive clustering guided by self-supervision, the evolution of clustering methods intrinsically corresponds to the progression of supervision signals. At present, substantial efforts have been devoted to mining internal supervision signals from data. Nevertheless, the abundant external knowledge such as semantic descriptions, which naturally conduces to clustering, is regrettably overlooked. In this work, we propose leveraging external knowledge as a new supervision signal to guide clustering, even though it seems irrelevant to the given data. To implement and validate our idea, we design an externally guided clustering method (Text-Aided Clustering, TAC), which leverages the textual semantics of WordNet to facilitate image clustering. Specifically, TAC first selects and retrieves WordNet nouns that best distinguish images to enhance the feature discriminability. Then, to improve image clustering performance, TAC collaborates text and image modalities by mutually distilling cross-modal neighborhood information. Experiments demonstrate that TAC achieves state-of-the-art performance on five widely used and three more challenging image clustering benchmarks, including the full ImageNet-1K dataset.
Adaptive Meta-learner via Gradient Similarity for Few-shot Text Classification
Lei, Tianyi, Hu, Honghui, Luo, Qiaoyang, Peng, Dezhong, Wang, Xu
Few-shot text classification aims to classify the text under the few-shot scenario. Most of the previous methods adopt optimization-based meta learning to obtain task distribution. However, due to the neglect of matching between the few amount of samples and complicated models, as well as the distinction between useful and useless task features, these methods suffer from the overfitting issue. To address this issue, we propose a novel Adaptive Meta-learner via Gradient Similarity (AMGS) method to improve the model generalization ability to a new task. Specifically, the proposed AMGS alleviates the overfitting based on two aspects: (i) acquiring the potential semantic representation of samples and improving model generalization through the self-supervised auxiliary task in the inner loop, (ii) leveraging the adaptive meta-learner via gradient similarity to add constraints on the gradient obtained by base-learner in the outer loop. Moreover, we make a systematic analysis of the influence of regularization on the entire framework. Experimental results on several benchmarks demonstrate that the proposed AMGS consistently improves few-shot text classification performance compared with the state-of-the-art optimization-based meta-learning approaches.
Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric
Zeng, Pengxin, Li, Yunfan, Hu, Peng, Peng, Dezhong, Lv, Jiancheng, Peng, Xi
Fair clustering aims to divide data into distinct clusters while preventing sensitive attributes (\textit{e.g.}, gender, race, RNA sequencing technique) from dominating the clustering. Although a number of works have been conducted and achieved huge success recently, most of them are heuristical, and there lacks a unified theory for algorithm design. In this work, we fill this blank by developing a mutual information theory for deep fair clustering and accordingly designing a novel algorithm, dubbed FCMI. In brief, through maximizing and minimizing mutual information, FCMI is designed to achieve four characteristics highly expected by deep fair clustering, \textit{i.e.}, compact, balanced, and fair clusters, as well as informative features. Besides the contributions to theory and algorithm, another contribution of this work is proposing a novel fair clustering metric built upon information theory as well. Unlike existing evaluation metrics, our metric measures the clustering quality and fairness as a whole instead of separate manner. To verify the effectiveness of the proposed FCMI, we conduct experiments on six benchmarks including a single-cell RNA-seq atlas compared with 11 state-of-the-art methods in terms of five metrics. The code could be accessed from \url{ https://pengxi.me}.
Incomplete Multi-view Clustering via Prototype-based Imputation
Li, Haobin, Li, Yunfan, Yang, Mouxing, Hu, Peng, Peng, Dezhong, Peng, Xi
In this paper, we study how to achieve two characteristics highly-expected by incomplete multi-view clustering (IMvC). Namely, i) instance commonality refers to that within-cluster instances should share a common pattern, and ii) view versatility refers to that cross-view samples should own view-specific patterns. To this end, we design a novel dual-stream model which employs a dual attention layer and a dual contrastive learning loss to learn view-specific prototypes and model the sample-prototype relationship. When the view is missed, our model performs data recovery using the prototypes in the missing view and the sample-prototype relationship inherited from the observed view. Thanks to our dual-stream model, both cluster- and view-specific information could be captured, and thus the instance commonality and view versatility could be preserved to facilitate IMvC. Extensive experiments demonstrate the superiority of our method on six challenging benchmarks compared with 11 approaches. The code will be released.
Contrastive Clustering
Li, Yunfan, Hu, Peng, Liu, Zitao, Peng, Dezhong, Zhou, Joey Tianyi, Peng, Xi
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.
Locally linear representation for image clustering
Zhen, Liangli, Yi, Zhang, Peng, Xi, Peng, Dezhong
It is a key to construct a similarity graph in graph-oriented subspace learning and clustering. In a similarity graph, each vertex denotes a data point and the edge weight represents the similarity between two points. There are two popular schemes to construct a similarity graph, i.e., pairwise distance based scheme and linear representation based scheme. Most existing works have only involved one of the above schemes and suffered from some limitations. Specifically, pairwise distance based methods are sensitive to the noises and outliers compared with linear representation based methods. On the other hand, there is the possibility that linear representation based algorithms wrongly select inter-subspaces points to represent a point, which will degrade the performance. In this paper, we propose an algorithm, called Locally Linear Representation (LLR), which integrates pairwise distance with linear representation together to address the problems. The proposed algorithm can automatically encode each data point over a set of points that not only could denote the objective point with less residual error, but also are close to the point in Euclidean space. The experimental results show that our approach is promising in subspace learning and subspace clustering.