Goto

Collaborating Authors

 Peng, Dan


PocketLLM: Enabling On-Device Fine-Tuning for Personalized LLMs

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have indeed showcased their impressive capabilities. On mobile devices, the wealth of valuable, non-public data generated daily holds great promise for locally fine-tuning personalized LLMs, while maintaining privacy through on-device processing. However, the constraints of mobile device resources pose challenges to direct on-device LLM fine-tuning, mainly due to the memory-intensive nature of derivative-based optimization required for saving gradients and optimizer states. To tackle this, we propose employing derivative-free optimization techniques to enable on-device fine-tuning of LLM, even on memory-limited mobile devices. Empirical results demonstrate that the RoBERTa-large model and OPT-1.3B can be fine-tuned locally on the OPPO Reno 6 smartphone using around 4GB and 6.5GB of memory respectively, using derivative-free optimization techniques. This highlights the feasibility of on-device LLM fine-tuning on mobile devices, paving the way for personalized LLMs on resource-constrained devices while safeguarding data privacy.


Focused State Recognition Using EEG with Eye Movement-Assisted Annotation

arXiv.org Artificial Intelligence

With the rapid advancement in machine learning, the recognition and analysis of brain activity based on EEG and eye movement signals have attained a high level of sophistication. Utilizing deep learning models for learning EEG and eye movement features proves effective in classifying brain activities. A focused state indicates intense concentration on a task or thought. Distinguishing focused and unfocused states can be achieved through eye movement behaviors, reflecting variations in brain activities. By calculating binocular focusing point disparity in eye movement signals and integrating relevant EEG features, we propose an annotation method for focused states. The resulting comprehensive dataset, derived from raw data processed through a bio-acquisition device, includes both EEG features and focused labels annotated by eye movements. Extensive training and testing on several deep learning models, particularly the Transformer, yielded a 90.16% accuracy on the subject-dependent experiments. The validity of this approach was demonstrated, with cross-subject experiments, key frequency band and brain region analyses confirming its generalizability and providing physiological explanations.


Decoder-free Robustness Disentanglement without (Additional) Supervision

arXiv.org Machine Learning

Adversarial Training (AT) is proposed to alleviate the adversarial vulnerability of machine learning models by extracting only robust features from the input, which, however, inevitably leads to severe accuracy reduction as it discards the non-robust yet useful features. This motivates us to preserve both robust and non-robust features and separate them with disentangled representation learning. Our proposed Adversarial Asymmetric Training (AAT) algorithm can reliably disentangle robust and non-robust representations without additional supervision on robustness. Empirical results show our method does not only successfully preserve accuracy by combining two representations, but also achieve much better disentanglement than previous work.


Structure-Preserving Transformation: Generating Diverse and Transferable Adversarial Examples

arXiv.org Machine Learning

Adversarial examples are perturbed inputs designed to fool machine learning models. Most recent works on adversarial examples for image classification focus on directly modifying pixels with minor perturbations. A common requirement in all these works is that the malicious perturbations should be small enough (measured by an $L_p$ norm for some $p$) so that they are imperceptible to humans. However, small perturbations can be unnecessarily restrictive and limit the diversity of adversarial examples generated. Further, an $L_p$ norm based distance metric ignores important structure patterns hidden in images that are important to human perception. Consequently, even the minor perturbation introduced in recent works often makes the adversarial examples less natural to humans. More importantly, they often do not transfer well and are therefore less effective when attacking black-box models especially for those protected by a defense mechanism. In this paper, we propose a structure-preserving transformation (SPT) for generating natural and diverse adversarial examples with extremely high transferability. The key idea of our approach is to allow perceptible deviation in adversarial examples while keeping structure patterns that are central to a human classifier. Empirical results on the MNIST and the fashion-MNIST datasets show that adversarial examples generated by our approach can easily bypass strong adversarial training. Further, they transfer well to other target models with no loss or little loss of successful attack rate.