Peng, Daiyi
Best Practices and Lessons Learned on Synthetic Data for Language Models
Liu, Ruibo, Wei, Jerry, Liu, Fangyu, Si, Chenglei, Zhang, Yanzhe, Rao, Jinmeng, Zheng, Steven, Peng, Daiyi, Yang, Diyi, Zhou, Denny, Dai, Andrew M.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Long-form factuality in large language models
Wei, Jerry, Yang, Chengrun, Song, Xinying, Lu, Yifeng, Hu, Nathan, Huang, Jie, Tran, Dustin, Peng, Daiyi, Liu, Ruibo, Huang, Da, Du, Cosmo, Le, Quoc V.
Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for long-form factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality. To do so, we balance the percentage of supported facts in a response (precision) with the percentage of provided facts relative to a hyperparameter representing a user's preferred response length (recall). Empirically, we demonstrate that LLM agents can outperform crowdsourced human annotators - on a set of ~16k individual facts, SAFE agrees with crowdsourced human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators. We also benchmark thirteen language models on LongFact across four model families (Gemini, GPT, Claude, and PaLM-2), finding that larger language models generally achieve better long-form factuality. LongFact, SAFE, and all experimental code are available at https://github.com/google-deepmind/long-form-factuality.
OmniPred: Language Models as Universal Regressors
Song, Xingyou, Li, Oscar, Lee, Chansoo, Yang, Bangding, Peng, Daiyi, Perel, Sagi, Chen, Yutian
Over the broad landscape of experimental design, regression has been a powerful tool to accurately predict the outcome metrics of a system or model given a set of parameters, but has been traditionally restricted to methods which are only applicable to a specific task. In this paper, we propose OmniPred, a framework for training language models as universal end-to-end regressors over $(x,y)$ evaluation data from diverse real world experiments. Using data sourced from Google Vizier, one of the largest blackbox optimization databases in the world, our extensive experiments demonstrate that through only textual representations of mathematical parameters and values, language models are capable of very precise numerical regression, and if given the opportunity to train over multiple tasks, can significantly outperform traditional regression models.
Higher Layers Need More LoRA Experts
Gao, Chongyang, Chen, Kezhen, Rao, Jinmeng, Sun, Baochen, Liu, Ruibo, Peng, Daiyi, Zhang, Yawen, Guo, Xiaoyuan, Yang, Jie, Subrahmanian, VS
Parameter-efficient tuning (PEFT) techniques like low-rank adaptation (LoRA) offer training efficiency on Large Language Models, but their impact on model performance remains limited. Recent efforts integrate LoRA and Mixture-of-Experts (MoE) to improve the performance of PEFT methods. Despite promising results, research on improving the efficiency of LoRA with MoE is still in its early stages. Recent studies have shown that experts in the MoE architecture have different strengths and also exhibit some redundancy. Does this statement also apply to parameter-efficient MoE? In this paper, we introduce a novel parameter-efficient MoE method, \textit{\textbf{M}oE-L\textbf{o}RA with \textbf{L}ayer-wise Expert \textbf{A}llocation (MoLA)} for Transformer-based models, where each model layer has the flexibility to employ a varying number of LoRA experts. We investigate several architectures with varying layer-wise expert configurations. Experiments on six well-known NLP and commonsense QA benchmarks demonstrate that MoLA achieves equal or superior performance compared to all baselines. We find that allocating more LoRA experts to higher layers further enhances the effectiveness of models with a certain number of experts in total. With much fewer parameters, this allocation strategy outperforms the setting with the same number of experts in every layer. This work can be widely used as a plug-and-play parameter-efficient tuning approach for various applications. The code is available at https://github.com/GCYZSL/MoLA.
Gemini: A Family of Highly Capable Multimodal Models
Gemini Team, null, Anil, Rohan, Borgeaud, Sebastian, Wu, Yonghui, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Petrov, Slav, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Chadwick, Martin, Tomar, Gaurav Singh, Garcia, Xavier, Senter, Evan, Taropa, Emanuel, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Zhang, Yujing, Addanki, Ravi, Miech, Antoine, Louis, Annie, Shafey, Laurent El, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Attaluri, Nithya, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaly, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Lin, Hanzhao, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Cheng, Yong, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Li, YaGuang, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Elsayed, Gamaleldin, Chi, Ed, Mahdieh, Mahdis, Tenney, Ian, Hua, Nan, Petrychenko, Ivan, Kane, Patrick, Scandinaro, Dylan, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Sadovsky, Adam, Bunyan, Oskar, Rabiej, Dominik, Wu, Shimu, Zhang, John, Vasudevan, Gautam, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Chan, Betty, Rabinovitch, Pam G, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Potluri, Sahitya, Park, Jane, Davoodi, Elnaz, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Gorgolewski, Chris, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Suganthan, Paul, Palmer, Evan, Irving, Geoffrey, Loper, Edward, Faruqui, Manaal, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Fink, Michael, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Georgiev, Marin, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Yang, Fan, Piper, Jeff, Ie, Nathan, Lui, Minnie, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Thiet, Lam Nguyen, Andor, Daniel, Valenzuela, Pedro, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Velury, Sarmishta, Krause, Sebastian, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Latkar, Tejasi, Zhang, Mingyang, Le, Quoc, Abellan, Elena Allica, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Lall, Sid, Franko, Ken, Filonov, Egor, Bulanova, Anna, Leblond, Rémi, Yadav, Vikas, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Zhou, Hao, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Liu, Jeremiah, Omernick, Mark, Bishop, Colton, Kumar, Chintu, Sterneck, Rachel, Foley, Ryan, Jain, Rohan, Mishra, Swaroop, Xia, Jiawei, Bos, Taylor, Cideron, Geoffrey, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Gurita, Petru, Noga, Hila, Shah, Premal, Mankowitz, Daniel J., Polozov, Alex, Kushman, Nate, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Mohananey, Anhad, Geist, Matthieu, Mudgal, Sidharth, Girgin, Sertan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Yuan, Quan, Bagri, Sumit, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Severyn, Aliaksei, Lai, Jonathan, Wu, Kathy, Cheng, Heng-Tze, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Yang, Fan, Zhu, Rui, Geller, Mark, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Sozanschi, Andrei, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Goyal, Abhimanyu, Wu, Diane, Owusu-Afriyie, Denese, Du, Cosmo, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Sabaer, Wieting, John, Ajmeri, Omar, Uria, Benigno, Zhu, Tao, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Tran, Dustin, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Kalb, Norbert, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Lakshminarayanan, Balaji, Deck, Charlie, Upadhyay, Shyam, Lee, Hyo, Dusenberry, Mike, Li, Zonglin, Wang, Xuezhi, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Yue, Summer, Arora, Sho, Malmi, Eric, Mirylenka, Daniil, Tan, Qijun, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Zheng, Steven, Pongetti, Francesco, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Kotikalapudi, Ragha, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Kuang, Chenkai, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Ittycheriah, Abe, Shroff, Prakash, Sun, Pei, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Dasgupta, Ishita, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Liu, Yuan, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Penchev, Ivo, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Kurzrok, Adam, Webb, Lynette, Dua, Sahil, Li, Dong, Lahoti, Preethi, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Bilal, Taylan, Eltyshev, Evgenii, Balle, Daniel, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Yu, Adams, Angermueller, Christof, Li, Xiaowei, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Brooks, Kevin, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Jalan, Komal, Li, Dinghua, Perng, Ginger, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Chen, Mia, Milan, Kieran, Mikulik, Vladimir, Strohman, Trevor, Franco, Juliana, Green, Tim, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeffrey, Vinyals, Oriol
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.
Brainformers: Trading Simplicity for Efficiency
Zhou, Yanqi, Du, Nan, Huang, Yanping, Peng, Daiyi, Lan, Chang, Huang, Da, Shakeri, Siamak, So, David, Dai, Andrew, Lu, Yifeng, Chen, Zhifeng, Le, Quoc, Cui, Claire, Laundon, James, Dean, Jeff
Transformers are central to recent successes in natural language processing and computer vision. Transformers have a mostly uniform backbone where layers alternate between feed-forward and self-attention in order to build a deep network. Here we investigate this design choice and find that more complex blocks that have different permutations of layer primitives can be more efficient. Using this insight, we develop a complex block, named Brainformer, that consists of a diverse sets of layers such as sparsely gated feed-forward layers, dense feed-forward layers, attention layers, and various forms of layer normalization and activation functions. Brainformer consistently outperforms the state-of-the-art dense and sparse Transformers, in terms of both quality and efficiency. A Brainformer model with 8 billion activated parameters per token demonstrates 2x faster training convergence and 5x faster step time compared to its GLaM counterpart. In downstream task evaluation, Brainformer also demonstrates a 3% higher SuperGLUE score with fine-tuning compared to GLaM with a similar number of activated parameters. Finally, Brainformer largely outperforms a Primer dense model derived with NAS with similar computation per token on fewshot evaluations.
LayerNAS: Neural Architecture Search in Polynomial Complexity
Fan, Yicheng, Alon, Dana, Shen, Jingyue, Peng, Daiyi, Kumar, Keshav, Long, Yun, Wang, Xin, Iliopoulos, Fotis, Juan, Da-Cheng, Vee, Erik
Neural Architecture Search (NAS) has become a popular method for discovering effective model architectures, especially for target hardware. As such, NAS methods that find optimal architectures under constraints are essential. In our paper, we propose LayerNAS to address the challenge of multi-objective NAS by transforming it into a combinatorial optimization problem, which effectively constrains the search complexity to be polynomial. For a model architecture with $L$ layers, we perform layerwise-search for each layer, selecting from a set of search options $\mathbb{S}$. LayerNAS groups model candidates based on one objective, such as model size or latency, and searches for the optimal model based on another objective, thereby splitting the cost and reward elements of the search. This approach limits the search complexity to $ O(H \cdot |\mathbb{S}| \cdot L) $, where $H$ is a constant set in LayerNAS. Our experiments show that LayerNAS is able to consistently discover superior models across a variety of search spaces in comparison to strong baselines, including search spaces derived from NATS-Bench, MobileNetV2 and MobileNetV3.
ES-ENAS: Efficient Evolutionary Optimization for Large Hybrid Search Spaces
Song, Xingyou, Choromanski, Krzysztof, Parker-Holder, Jack, Tang, Yunhao, Zhang, Qiuyi, Peng, Daiyi, Jain, Deepali, Gao, Wenbo, Pacchiano, Aldo, Sarlos, Tamas, Yang, Yuxiang
In this paper, we approach the problem of optimizing blackbox functions over large hybrid search spaces consisting of both combinatorial and continuous parameters. We demonstrate that previous evolutionary algorithms which rely on mutation-based approaches, while flexible over combinatorial spaces, suffer from a curse of dimensionality in high dimensional continuous spaces both theoretically and empirically, which thus limits their scope over hybrid search spaces as well. In order to combat this curse, we propose ES-ENAS, a simple and modular joint optimization procedure combining the class of sample-efficient smoothed gradient techniques, commonly known as Evolutionary Strategies (ES), with combinatorial optimizers in a highly scalable and intuitive way, inspired by the one-shot or supernet paradigm introduced in Efficient Neural Architecture Search (ENAS). By doing so, we achieve significantly more sample efficiency, which we empirically demonstrate over synthetic benchmarks, and are further able to apply ES-ENAS for architecture search over popular RL benchmarks.
PyGlove: Efficiently Exchanging ML Ideas as Code
Peng, Daiyi, Dong, Xuanyi, Real, Esteban, Lu, Yifeng, Le, Quoc V.
The increasing complexity and scale of machine learning (ML) has led to the need for more efficient collaboration among multiple teams. For example, when a research team invents a new architecture like "ResNet," it is desirable for multiple engineering teams to adopt it. However, the effort required for each team to study and understand the invention does not scale well with the number of teams or inventions. In this paper, we present an extension of our PyGlove library to easily and scalably share ML ideas. PyGlove represents ideas as symbolic rule-based patches, enabling researchers to write down the rules for models they have not seen. For example, an inventor can write rules that will "add skip-connections." This permits a network effect among teams: at once, any team can issue patches to all other teams. Such a network effect allows users to quickly surmount the cost of adopting PyGlove by writing less code quicker, providing a benefit that scales with time. We describe the new paradigm of organizing ML through symbolic patches and compare it to existing approaches. We also perform a case study of a large codebase where PyGlove led to an 80% reduction in the number of lines of code.
RL-DARTS: Differentiable Architecture Search for Reinforcement Learning
Miao, Yingjie, Song, Xingyou, Peng, Daiyi, Yue, Summer, Brevdo, Eugene, Faust, Aleksandra
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neural architecture search techniques in RL, and demonstrate that by simply replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code. Surprisingly, we find that the supernet can be used as an actor for inference to generate replay data in standard RL training loops, and thus train end-to-end. Throughout this training process, we show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.