Peluso, Alina
Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2024 Symposium
Adibi, Amin, Cao, Xu, Ji, Zongliang, Kaur, Jivat Neet, Chen, Winston, Healey, Elizabeth, Nuwagira, Brighton, Ye, Wenqian, Woollard, Geoffrey, Xu, Maxwell A, Cui, Hejie, Xi, Johnny, Chang, Trenton, Bikia, Vasiliki, Zhang, Nicole, Noori, Ayush, Xia, Yuan, Hossain, Md. Belal, Frank, Hanna A., Peluso, Alina, Pu, Yuan, Shen, Shannon Zejiang, Wu, John, Fallahpour, Adibvafa, Mahbub, Sazan, Duncan, Ross, Zhang, Yuwei, Cao, Yurui, Xu, Zuheng, Craig, Michael, Krishnan, Rahul G., Beheshti, Rahmatollah, Rehg, James M., Karim, Mohammad Ehsanul, Coffee, Megan, Celi, Leo Anthony, Fries, Jason Alan, Sadatsafavi, Mohsen, Shung, Dennis, McWeeney, Shannon, Dafflon, Jessica, Jabbour, Sarah
The fourth Machine Learning for Health (ML4H) symposium was held in person on December 15th and 16th, 2024, in the traditional, ancestral, and unceded territories of the Musqueam, Squamish, and Tsleil-Waututh Nations in Vancouver, British Columbia, Canada. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. The organization of the research roundtables at the conference involved 13 senior and 27 junior chairs across 13 tables. Each roundtable session included an invited senior chair (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with an interest in the session's topic.
Model Reduction of Shallow CNN Model for Reliable Deployment of Information Extraction from Medical Reports
Dubey, Abhishek K, Peluso, Alina, Hinkle, Jacob, Agarawal, Devanshu, Tan, Zilong
Shallow Convolution Neural Network (CNN) is a time-tested tool for the information extraction from cancer pathology reports. Shallow CNN performs competitively on this task to other deep learning models including BERT, which holds the state-of-the-art for many NLP tasks. The main insight behind this eccentric phenomenon is that the information extraction from cancer pathology reports require only a small number of domain-specific text segments to perform the task, thus making the most of the texts and contexts excessive for the task. Shallow CNN model is well-suited to identify these key short text segments from the labeled training set; however, the identified text segments remain obscure to humans. In this study, we fill this gap by developing a model reduction tool to make a reliable connection between CNN filters and relevant text segments by discarding the spurious connections. We reduce the complexity of shallow CNN representation by approximating it with a linear transformation of n-gram presence representation with a non-negativity and sparsity prior on the transformation weights to obtain an interpretable model. Our approach bridge the gap between the conventionally perceived trade-off boundary between accuracy on the one side and explainability on the other by model reduction.