Pellegrini, Chantal
Rewarding Doubt: A Reinforcement Learning Approach to Confidence Calibration of Large Language Models
Stangel, Paul, Bani-Harouni, David, Pellegrini, Chantal, Özsoy, Ege, Zaripova, Kamilia, Keicher, Matthias, Navab, Nassir
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We introduce a novel Reinforcement Learning (RL) approach for LLM calibration that fine-tunes LLMs to elicit calibrated confidence estimations in their answers to factual questions. We model the problem as a betting game where the model predicts a confidence score together with every answer, and design a reward function that penalizes both over and under-confidence. We prove that under our reward design an optimal policy would result in a perfectly calibrated confidence estimation. Our experiments demonstrate significantly improved confidence calibration and generalization to new tasks without re-training, indicating that our approach teaches a general confidence awareness. This approach enables the training of inherently calibrated LLMs.
RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance
Pellegrini, Chantal, Özsoy, Ege, Busam, Benjamin, Navab, Nassir, Keicher, Matthias
Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems. Our code is available on github: https://github.com/ChantalMP/RaDialog.
Rad-ReStruct: A Novel VQA Benchmark and Method for Structured Radiology Reporting
Pellegrini, Chantal, Keicher, Matthias, Özsoy, Ege, Navab, Nassir
Radiology reporting is a crucial part of the communication between radiologists and other medical professionals, but it can be time-consuming and error-prone. One approach to alleviate this is structured reporting, which saves time and enables a more accurate evaluation than free-text reports. However, there is limited research on automating structured reporting, and no public benchmark is available for evaluating and comparing different methods. To close this gap, we introduce Rad-ReStruct, a new benchmark dataset that provides fine-grained, hierarchically ordered annotations in the form of structured reports for X-Ray images. We model the structured reporting task as hierarchical visual question answering (VQA) and propose hi-VQA, a novel method that considers prior context in the form of previously asked questions and answers for populating a structured radiology report. Our experiments show that hi-VQA achieves competitive performance to the state-of-the-art on the medical VQA benchmark VQARad while performing best among methods without domain-specific vision-language pretraining and provides a strong baseline on Rad-ReStruct. Our work represents a significant step towards the automated population of structured radiology reports and provides a valuable first benchmark for future research in this area. Our dataset and code is available at https://github.com/ChantalMP/Rad-ReStruct.
Unsupervised pre-training of graph transformers on patient population graphs
Pellegrini, Chantal, Navab, Nassir, Kazi, Anees
Pre-training has shown success in different areas of machine learning, such as Computer Vision, Natural Language Processing (NLP), and medical imaging. However, it has not been fully explored for clinical data analysis. An immense amount of clinical records are recorded, but still, data and labels can be scarce for data collected in small hospitals or dealing with rare diseases. In such scenarios, pre-training on a larger set of unlabelled clinical data could improve performance. In this paper, we propose novel unsupervised pre-training techniques designed for heterogeneous, multi-modal clinical data for patient outcome prediction inspired by masked language modeling (MLM), by leveraging graph deep learning over population graphs. To this end, we further propose a graph-transformer-based network, designed to handle heterogeneous clinical data. By combining masking-based pre-training with a transformer-based network, we translate the success of masking-based pre-training in other domains to heterogeneous clinical data. We show the benefit of our pre-training method in a self-supervised and a transfer learning setting, utilizing three medical datasets TADPOLE, MIMIC-III, and a Sepsis Prediction Dataset. We find that our proposed pre-training methods help in modeling the data at a patient and population level and improve performance in different fine-tuning tasks on all datasets.
Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis
Pellegrini, Chantal, Keicher, Matthias, Özsoy, Ege, Jiraskova, Petra, Braren, Rickmer, Navab, Nassir
Automated diagnosis prediction from medical images is a valuable resource to support clinical decision-making. However, such systems usually need to be trained on large amounts of annotated data, which often is scarce in the medical domain. Zero-shot methods address this challenge by allowing a flexible adaption to new settings with different clinical findings without relying on labeled data. Further, to integrate automated diagnosis in the clinical workflow, methods should be transparent and explainable, increasing medical professionals' trust and facilitating correctness verification. In this work, we introduce Xplainer, a novel framework for explainable zero-shot diagnosis in the clinical setting. Xplainer adapts the classification-by-description approach of contrastive vision-language models to the multi-label medical diagnosis task. Specifically, instead of directly predicting a diagnosis, we prompt the model to classify the existence of descriptive observations, which a radiologist would look for on an X-Ray scan, and use the descriptor probabilities to estimate the likelihood of a diagnosis. Our model is explainable by design, as the final diagnosis prediction is directly based on the prediction of the underlying descriptors. We evaluate Xplainer on two chest X-ray datasets, CheXpert and ChestX-ray14, and demonstrate its effectiveness in improving the performance and explainability of zero-shot diagnosis. Our results suggest that Xplainer provides a more detailed understanding of the decision-making process and can be a valuable tool for clinical diagnosis.