Pelleg, Dan
Active Learning for Anomaly and Rare-Category Detection
Pelleg, Dan, Moore, Andrew W.
We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the usefulness of anomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anomalies to be hunted down within a massive dataset.
Active Learning for Anomaly and Rare-Category Detection
Pelleg, Dan, Moore, Andrew W.
We introduce a novel active-learning scenario in which a user wants to work with a learning algorithm to identify useful anomalies. These are distinguished from the traditional statistical definition of anomalies as outliers or merely ill-modeled points. Our distinction is that the usefulness ofanomalies is categorized subjectively by the user. We make two additional assumptions. First, there exist extremely few useful anomalies tobe hunted down within a massive dataset.
Using Tarjan's Red Rule for Fast Dependency Tree Construction
Pelleg, Dan, Moore, Andrew W.
We focus on the problem of efficient learning of dependency trees. It is well-known that given the pairwise mutual information coefficients, a minimum-weight spanning tree algorithm solves this problem exactly and in polynomial time. However, for large data-sets it is the construction of the correlation matrix that dominates the running time. We have developed a new spanning-tree algorithm which is capable of exploiting partial knowledge about edge weights. The partial knowledge we maintain is a probabilistic confidence interval on the coefficients, which we derive by examining just a small sample of the data. The algorithm is able to flag the need to shrink an interval, which translates to inspection of more data for the particular attribute pair. Experimental results show running time that is near-constant in the number of records, without significant loss in accuracy of the generated trees. Interestingly, our spanning-tree algorithm is based solely on Tarjan's red-edge rule, which is generally considered a guaranteed recipe for bad performance.
Using Tarjan's Red Rule for Fast Dependency Tree Construction
Pelleg, Dan, Moore, Andrew W.
We focus on the problem of efficient learning of dependency trees. It is well-known that given the pairwise mutual information coefficients, a minimum-weight spanning tree algorithm solves this problem exactly and in polynomial time. However, for large data-sets it is the construction of the correlation matrix that dominates the running time. We have developed a new spanning-tree algorithm which is capable of exploiting partial knowledge about edge weights. The partial knowledge we maintain is a probabilistic confidence interval on the coefficients, which we derive by examining just a small sample of the data. The algorithm is able to flag the need to shrink an interval, which translates to inspection of more data for the particular attribute pair. Experimental results show running time that is near-constant in the number of records, without significant loss in accuracy of the generated trees. Interestingly, our spanning-tree algorithm is based solely on Tarjan's red-edge rule, which is generally considered a guaranteed recipe for bad performance.
Using Tarjan's Red Rule for Fast Dependency Tree Construction
Pelleg, Dan, Moore, Andrew W.
We focus on the problem of efficient learning of dependency trees. It is well-known that given the pairwise mutual information coefficients, a minimum-weight spanning tree algorithm solves this problem exactly and in polynomial time. However, for large data-sets it is the construction ofthe correlation matrix that dominates the running time. We have developed a new spanning-tree algorithm which is capable of exploiting partial knowledge about edge weights. The partial knowledge we maintain isa probabilistic confidence interval on the coefficients, which we derive by examining just a small sample of the data. The algorithm is able to flag the need to shrink an interval, which translates to inspection ofmore data for the particular attribute pair. Experimental results show running time that is near-constant in the number of records, without significantloss in accuracy of the generated trees. Interestingly, our spanning-tree algorithm is based solely on Tarjan's red-edge rule, which is generally considered a guaranteed recipe for bad performance.