Goto

Collaborating Authors

 Peissig, Peggy


Temporal Poisson Square Root Graphical Models

arXiv.org Machine Learning

We propose temporal Poisson square root graphical models (TPSQRs), a generalization of Poisson square root graphical models (PSQRs) specifically designed for modeling longitudinal event data. By estimating the temporal relationships for all possible pairs of event types, TPSQRs can offer a holistic perspective about whether the occurrences of any given event type could excite or inhibit any other type. A TPSQR is learned by estimating a collection of interrelated PSQRs that share the same template parameterization. These PSQRs are estimated jointly in a pseudo-likelihood fashion, where Poisson pseudo-likelihood is used to approximate the original more computationally-intensive pseudo-likelihood problem stemming from PSQRs. Theoretically, we demonstrate that under mild assumptions, the Poisson pseudo-likelihood approximation is sparsistent for recovering the underlying PSQR. Empirically, we learn TPSQRs from Marshfield Clinic electronic health records (EHRs) with millions of drug prescription and condition diagnosis events, for adverse drug reaction (ADR) detection. Experimental results demonstrate that the learned TPSQRs can recover ADR signals from the EHR effectively and efficiently.


A Preliminary Investigation into Predictive Models for Adverse Drug Events

AAAI Conferences

Adverse drug events are a leading cause of danger and cost in health care. We could reduce both the danger and the cost if we had accurate models to predict, at prescription time for each drug, which patients are most at risk for known adverse reactions to that drug, such as myocardial infarction (MI, or "heart attack") if given a Cox2 inhibitor, angioedema if given an ACE inhibitor, or bleeding if given an anticoagulant such as Warfarin. We address this task for the specific case of Cox2 inhibitors, a type of non-steroidal anti-inflammatory drug (NSAID) or pain reliever that is easier on the gastrointestinal system than most NSAIDS. Because of the MI adverse drug reaction, some but not all very effective Cox2 inhibitors were removed from the market. Specifically, we use machine learning to predict which patients on a Cox2 inhibitor would suffer an MI. An important issue for machine learning is that we do not know which of these patients might have suffered an MI even without the drug. To begin to make some headway on this important problem, we compare our predictive model for MI for patients on Cox2 inhibitors against a more general model for predicting MI among a broader population not on Cox2 inhibitors.


Identifying Adverse Drug Events by Relational Learning

AAAI Conferences

The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, postmarketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task, related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.


Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events

arXiv.org Artificial Intelligence

Learning from electronic medical records (EMR) is challenging due to their relational nature and the uncertain dependence between a patient's past and future health status. Statistical relational learning is a natural fit for analyzing EMRs but is less adept at handling their inherent latent structure, such as connections between related medications or diseases. One way to capture the latent structure is via a relational clustering of objects. We propose a novel approach that, instead of pre-clustering the objects, performs a demand-driven clustering during learning. We evaluate our algorithm on three real-world tasks where the goal is to use EMRs to predict whether a patient will have an adverse reaction to a medication. We find that our approach is more accurate than performing no clustering, pre-clustering, and using expert-constructed medical heterarchies.