Goto

Collaborating Authors

 Pei, Qingqi


Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach

arXiv.org Artificial Intelligence

Federated learning (FL) is a viable technique to train a shared machine learning model without sharing data. Hierarchical FL (HFL) system has yet to be studied regrading its multiple levels of energy, computation, communication, and client scheduling, especially when it comes to clients relying on energy harvesting to power their operations. This paper presents a new two-phase deep deterministic policy gradient (DDPG) framework, referred to as ``TP-DDPG'', to balance online the learning delay and model accuracy of an FL process in an energy harvesting-powered HFL system. The key idea is that we divide optimization decisions into two groups, and employ DDPG to learn one group in the first phase, while interpreting the other group as part of the environment to provide rewards for training the DDPG in the second phase. Specifically, the DDPG learns the selection of participating clients, and their CPU configurations and the transmission powers. A new straggler-aware client association and bandwidth allocation (SCABA) algorithm efficiently optimizes the other decisions and evaluates the reward for the DDPG. Experiments demonstrate that with substantially reduced number of learnable parameters, the TP-DDPG can quickly converge to effective polices that can shorten the training time of HFL by 39.4% compared to its benchmarks, when the required test accuracy of HFL is 0.9.


When Evolutionary Computation Meets Privacy

arXiv.org Artificial Intelligence

Recently, evolutionary computation (EC) has been promoted by machine learning, distributed computing, and big data technologies, resulting in new research directions of EC like distributed EC and surrogate-assisted EC. These advances have significantly improved the performance and the application scope of EC, but also trigger privacy leakages, such as the leakage of optimal results and surrogate model. Accordingly, evolutionary computation combined with privacy protection is becoming an emerging topic. However, privacy concerns in evolutionary computation lack a systematic exploration, especially for the object, motivation, position, and method of privacy protection. To this end, in this paper, we discuss three typical optimization paradigms (i.e., \textit{centralized optimization, distributed optimization, and data-driven optimization}) to characterize optimization modes of evolutionary computation and propose BOOM to sort out privacy concerns in evolutionary computation. Specifically, the centralized optimization paradigm allows clients to outsource optimization problems to the centralized server and obtain optimization solutions from the server. While the distributed optimization paradigm exploits the storage and computational power of distributed devices to solve optimization problems. Also, the data-driven optimization paradigm utilizes data collected in history to tackle optimization problems lacking explicit objective functions. Particularly, this paper adopts BOOM to characterize the object and motivation of privacy protection in three typical optimization paradigms and discusses potential privacy-preserving technologies balancing optimization performance and privacy guarantees in three typical optimization paradigms. Furthermore, this paper attempts to foresee some new research directions of privacy-preserving evolutionary computation.