Goto

Collaborating Authors

 Pei, Hongbin


Robust Visual Question Answering: Datasets, Methods, and Future Challenges

arXiv.org Artificial Intelligence

Abstract--Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Thirdly, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints. Question Answering (VQA) aims to build intelligent machines that are able to provide a natural views. Second, a variety of VQA methods have language answer accurately given an image and a natural been proposed, which can be classified into three groups language question about the image [1].


Curvature Regularization to Prevent Distortion in Graph Embedding

arXiv.org Machine Learning

Recent research on graph embedding has achieved success in various applications. Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space. We argue an important but neglected problem about this proximity-preserving strategy: Graph topology patterns, while preserved well into an embedding manifold by preserving proximity, may distort in the ambient embedding Euclidean space, and hence to detect them becomes difficult for machine learning models. To address the problem, we propose curvature regularization, to enforce flatness for embedding manifolds, thereby preventing the distortion. We present a novel angle-based sectional curvature, termed ABS curvature, and accordingly three kinds of curvature regularization to induce flat embedding manifolds during graph embedding. We integrate curvature regularization into five popular proximity-preserving embedding methods, and empirical results in two applications show significant improvements on a wide range of open graph datasets.


Group Sparse Bayesian Learning for Active Surveillance on Epidemic Dynamics

AAAI Conferences

Predicting epidemic dynamics is of great value in understanding and controlling diffusion processes, such as infectious disease spread and information propagation. This task is intractable, especially when surveillance resources are very limited. To address the challenge, we study the problem of active surveillance, i.e., how to identify a small portion of system components as sentinels to effect monitoring, such that the epidemic dynamics of an entire system can be readily predicted from the partial data collected by such sentinels. We propose a novel measure, the gamma value, to identify the sentinels by modeling a sentinel network with row sparsity structure. We design a flexible group sparse Bayesian learning algorithm to mine the sentinel network suitable for handling both linear and non-linear dynamical systems by using the expectation maximization method and variational approximation. The efficacy of the proposed algorithm is theoretically analyzed and empirically validated using both synthetic and real-world data.


Group Sparse Bayesian Learning for Active Surveillance on Epidemic Dynamics

arXiv.org Machine Learning

Predicting epidemic dynamics is of great value in understanding and controlling diffusion processes, such as infectious disease spread and information propagation. This task is intractable, especially when surveillance resources are very limited. To address the challenge, we study the problem of active surveillance, i.e., how to identify a small portion of system components as sentinels to effect monitoring, such that the epidemic dynamics of an entire system can be readily predicted from the partial data collected by such sentinels. We propose a novel measure, the gamma value, to identify the sentinels by modeling a sentinel network with row sparsity structure. We design a flexible group sparse Bayesian learning algorithm to mine the sentinel network suitable for handling both linear and non-linear dynamical systems by using the expectation maximization method and variational approximation. The efficacy of the proposed algorithm is theoretically analyzed and empirically validated using both synthetic and real-world data.