Pedro, Kevin
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
Krause, Claudius, Giannelli, Michele Faucci, Kasieczka, Gregor, Nachman, Benjamin, Salamani, Dalila, Shih, David, Zaborowska, Anna, Amram, Oz, Borras, Kerstin, Buckley, Matthew R., Buhmann, Erik, Buss, Thorsten, Cardoso, Renato Paulo Da Costa, Caterini, Anthony L., Chernyavskaya, Nadezda, Corchia, Federico A. G., Cresswell, Jesse C., Diefenbacher, Sascha, Dreyer, Etienne, Ekambaram, Vijay, Eren, Engin, Ernst, Florian, Favaro, Luigi, Franchini, Matteo, Gaede, Frank, Gross, Eilam, Hsu, Shih-Chieh, Jaruskova, Kristina, Käch, Benno, Kalagnanam, Jayant, Kansal, Raghav, Kim, Taewoo, Kobylianskii, Dmitrii, Korol, Anatolii, Korcari, William, Krücker, Dirk, Krüger, Katja, Letizia, Marco, Li, Shu, Liu, Qibin, Liu, Xiulong, Loaiza-Ganem, Gabriel, Madula, Thandikire, McKeown, Peter, Melzer-Pellmann, Isabell-A., Mikuni, Vinicius, Nguyen, Nam, Ore, Ayodele, Schweitzer, Sofia Palacios, Pang, Ian, Pedro, Kevin, Plehn, Tilman, Pokorski, Witold, Qu, Huilin, Raikwar, Piyush, Raine, John A., Reyes-Gonzalez, Humberto, Rinaldi, Lorenzo, Ross, Brendan Leigh, Scham, Moritz A. W., Schnake, Simon, Shimmin, Chase, Shlizerman, Eli, Soybelman, Nathalie, Srivatsa, Mudhakar, Tsolaki, Kalliopi, Vallecorsa, Sofia, Yeo, Kyongmin, Zhang, Rui
We present the results of the "Fast Calorimeter Simulation Challenge 2022" -- the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
Ćiprijanović, Aleksandra, Kafkes, Diana, Snyder, Gregory, Sánchez, F. Javier, Perdue, Gabriel Nathan, Pedro, Kevin, Nord, Brian, Madireddy, Sandeep, Wild, Stefan M.
Data processing and analysis pipelines in cosmological survey experiments introduce data perturbations that can significantly degrade the performance of deep learning-based models. Given the increased adoption of supervised deep learning methods for processing and analysis of cosmological survey data, the assessment of data perturbation effects and the development of methods that increase model robustness are increasingly important. In the context of morphological classification of galaxies, we study the effects of perturbations in imaging data. In particular, we examine the consequences of using neural networks when training on baseline data and testing on perturbed data. We consider perturbations associated with two primary sources: 1) increased observational noise as represented by higher levels of Poisson noise and 2) data processing noise incurred by steps such as image compression or telescope errors as represented by one-pixel adversarial attacks. We also test the efficacy of domain adaptation techniques in mitigating the perturbation-driven errors. We use classification accuracy, latent space visualizations, and latent space distance to assess model robustness. Without domain adaptation, we find that processing pixel-level errors easily flip the classification into an incorrect class and that higher observational noise makes the model trained on low-noise data unable to classify galaxy morphologies. On the other hand, we show that training with domain adaptation improves model robustness and mitigates the effects of these perturbations, improving the classification accuracy by 23% on data with higher observational noise. Domain adaptation also increases by a factor of ~2.3 the latent space distance between the baseline and the incorrectly classified one-pixel perturbed image, making the model more robust to inadvertent perturbations.
Fast convolutional neural networks on FPGAs with hls4ml
Aarrestad, Thea, Loncar, Vladimir, Pierini, Maurizio, Summers, Sioni, Ngadiuba, Jennifer, Petersson, Christoffer, Linander, Hampus, Iiyama, Yutaro, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Rankin, Dylan, Jindariani, Sergo, Pedro, Kevin, Tran, Nhan, Liu, Mia, Kreinar, Edward, Wu, Zhenbin, Hoang, Duc
The hls4ml library [1, 2] is an open source software designed to facilitate the deployment of machine learning (ML) models on field-programmable gate arrays (FPGAs), targeting low-latency and low-power edge applications. Taking as input a neural network model, hls4ml generates C/C code designed to be transpiled into FPGA firmware by processing it with a high-level synthesis (HLS) library. The development of hls4ml was historically driven by the need to integrate ML algorithms in the first stage of the real-time data processing of particle physics experiments operating at the CERN Large Hadron Collider (LHC). The LHC produces high-energy proton collisions (or events) every 25 ns, each consisting of about 1 MB of raw data. Since this throughput is overwhelming for the currently available processing and storage resources, the LHC experiments run a real-time event selection system, the so-called Level-1 trigger (L1T), to reduce the event rate from 40 MHz to 100 kHz [3-6]. Due to the size of the buffering system, the L1T system operates with a fixed latency of O(1 µs). While hls4ml excels as a tool to automatically generate low-latency ML firmware for L1T applications, it also offers interesting opportunities for edge-computing applications beyond particle physics whenever efficient, e.g.