Goto

Collaborating Authors

 Pedersen, Joachim Winther


Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots

arXiv.org Artificial Intelligence

Abstract-- Artificial neural networks can be used to solve a variety of robotic tasks. However, they risk failing catastrophically when faced with out-of-distribution (OOD) situations. Several approaches have employed a type of synaptic plasticity known as Hebbian learning that can dynamically adjust weights based on local neural activities. Research has shown that synaptic plasticity can make policies more robust and help them adapt to unforeseen changes in the environment. In this work, we improve the Hebbian network with a weight normalization mechanism for preventing weight divergence, analyze the principal components of the Hebbian's weights, The disadvantages of these In the field of machine learning research, deep neural types of solutions are that they extend the necessary training networks (DNNs) have been shown to be useful across a time or risk, resulting in an architecture that is overly specific wide range of tasks [1], [2], including robotics [3], [4], [5]. to the task for which it was designed [11], [12]. However, policies for agent control based on deep neural Animals, on the other hand, demonstrate remarkable networks tend to be brittle [6], meaning that they are at risk adaptability in adjusting their motor patterns to accomplish of catastrophic failure when faced with out-of-distribution various tasks. Synaptic plasticity is thought to play (OOD) situations [7], [8].


From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have taken the field of AI by storm, but their adoption in the field of Artificial Life (ALife) has been, so far, relatively reserved. In this work we investigate the potential synergies between LLMs and ALife, drawing on a large body of research in the two fields. We explore the potential of LLMs as tools for ALife research, for example, as operators for evolutionary computation or the generation of open-ended environments. Reciprocally, principles of ALife, such as self-organization, collective intelligence and evolvability can provide an opportunity for shaping the development and functionalities of LLMs, leading to more adaptive and responsive models. By investigating this dynamic interplay, the paper aims to inspire innovative crossover approaches for both ALife and LLM research. Along the way, we examine the extent to which LLMs appear to increasingly exhibit properties such as emergence or collective intelligence, expanding beyond their original goal of generating text, and potentially redefining our perception of lifelike intelligence in artificial systems.


Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents

arXiv.org Artificial Intelligence

Artificial neural networks used for reinforcement learning are structurally rigid, meaning that each optimized parameter of the network is tied to its specific placement in the network structure. It also means that a network only works with pre-defined and fixed input- and output sizes. This is a consequence of having the number of optimized parameters being directly dependent on the structure of the network. Structural rigidity limits the ability to optimize parameters of policies across multiple environments that do not share input and output spaces. Here, we evolve a set of neurons and plastic synapses each represented by a gated recurrent unit (GRU). During optimization, the parameters of these fundamental units of a neural network are optimized in different random structural configurations. Earlier work has shown that parameter sharing between units is important for making structurally flexible neurons We show that it is possible to optimize a set of distinct neuron- and synapse types allowing for a mitigation of the symmetry dilemma. We demonstrate this by optimizing a single set of neurons and synapses to solve multiple reinforcement learning control tasks simultaneously.


Growing Artificial Neural Networks for Control: the Role of Neuronal Diversity

arXiv.org Artificial Intelligence

In biological evolution complex neural structures grow from a handful of cellular ingredients. As genomes in nature are bounded in size, this complexity is achieved by a growth process where cells communicate locally to decide whether to differentiate, proliferate and connect with other cells. This self-organisation is hypothesized to play an important part in the generalisation, and robustness of biological neural networks. Artificial neural networks (ANNs), on the other hand, are traditionally optimized in the space of weights. Thus, the benefits and challenges of growing artificial neural networks remain understudied. Building on the previously introduced Neural Developmental Programs (NDP), in this work we present an algorithm for growing ANNs that solve reinforcement learning tasks. We identify a key challenge: ensuring phenotypic complexity requires maintaining neuronal diversity, but this diversity comes at the cost of optimization stability. To address this, we introduce two mechanisms: (a) equipping neurons with an intrinsic state inherited upon neurogenesis; (b) lateral inhibition, a mechanism inspired by biological growth, which controlls the pace of growth, helping diversity persist. We show that both mechanisms contribute to neuronal diversity and that, equipped with them, NDPs achieve comparable results to existing direct and developmental encodings in complex locomotion tasks


Learning to Act through Evolution of Neural Diversity in Random Neural Networks

arXiv.org Artificial Intelligence

Biological nervous systems consist of networks of diverse, sophisticated information processors in the form of neurons of different classes. In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons within a layer or even the whole network; training of ANNs focuses on synaptic optimization. In this paper, we propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations. Demonstrating the promise of the approach, we show that evolving neural parameters alone allows agents to solve various reinforcement learning tasks without optimizing any synaptic weights. While not aiming to be an accurate biological model, parameterizing neurons to a larger degree than the current common practice, allows us to ask questions about the computational abilities afforded by neural diversity in random neural networks. The presented results open up interesting future research directions, such as combining evolved neural diversity with activity-dependent plasticity.