Pedarsani, Ramtin
Learning to Understand: Identifying Interactions via the Mobius Transform
Kang, Justin S., Erginbas, Yigit E., Butler, Landon, Pedarsani, Ramtin, Ramchandran, Kannan
One of the most fundamental problems in machine learning is finding interpretable representations of the functions we learn. The Mobius transform is a useful tool for this because its coefficients correspond to unique importance scores on sets of input variables. The Mobius Transform is strongly related (and in some cases equivalent) to the concept of Shapley value, which is a widely used game-theoretic notion of importance. This work focuses on the (typical) regime where the fraction of non-zero Mobius coefficients (and thus interactions between inputs) is small compared to the set of all $2^n$ possible interactions between $n$ inputs. When there are $K = O(2^{n \delta})$ with $\delta \leq \frac{1}{3}$ non-zero coefficients chosen uniformly at random, our algorithm exactly recovers the Mobius transform in $O(Kn)$ samples and $O(Kn^2)$ time with vanishing error as $K \rightarrow \infty$, the first non-adaptive algorithm to do so. We also uncover a surprising connection between group testing and the Mobius transform. In the case where all interactions are between at most $t = \Theta(n^{\alpha})$ inputs, for $\alpha < 0.409$, we are able to leverage results from group testing to provide the first algorithm that computes the Mobius transform in $O(Kt\log n)$ sample complexity and $O(K\mathrm{poly}(n))$ time with vanishing error as $K \rightarrow \infty$. Finally, we present a robust version of this algorithm that achieves the same sample and time complexity under some assumptions, but with a factor depending on noise variance. Our work is deeply interdisciplinary, drawing from tools spanning across signal processing, algebra, information theory, learning theory and group testing to address this important problem at the forefront of machine learning.
Inverse Reinforcement Learning by Estimating Expertise of Demonstrators
Beliaev, Mark, Pedarsani, Ramtin
In Imitation Learning (IL), utilizing suboptimal and heterogeneous demonstrations presents a substantial challenge due to the varied nature of real-world data. However, standard IL algorithms consider these datasets as homogeneous, thereby inheriting the deficiencies of suboptimal demonstrators. Previous approaches to this issue typically rely on impractical assumptions like high-quality data subsets, confidence rankings, or explicit environmental knowledge. This paper introduces IRLEED, Inverse Reinforcement Learning by Estimating Expertise of Demonstrators, a novel framework that overcomes these hurdles without prior knowledge of demonstrator expertise. IRLEED enhances existing Inverse Reinforcement Learning (IRL) algorithms by combining a general model for demonstrator suboptimality to address reward bias and action variance, with a Maximum Entropy IRL framework to efficiently derive the optimal policy from diverse, suboptimal demonstrations. Experiments in both online and offline IL settings, with simulated and human-generated data, demonstrate IRLEED's adaptability and effectiveness, making it a versatile solution for learning from suboptimal demonstrations.
Equal Improvability: A New Fairness Notion Considering the Long-term Impact
Guldogan, Ozgur, Zeng, Yuchen, Sohn, Jy-yong, Pedarsani, Ramtin, Lee, Kangwook
Devising a fair classifier that does not discriminate against different groups is an important problem in machine learning. Recently, effort-based fairness notions are getting attention, which considers the scenarios of each individual making effort to improve its feature over time. Such scenarios happen in the real world, e.g., college admission and credit loaning, where each rejected sample makes effort to change its features to get accepted afterward. In this paper, we propose a new effortbased fairness notion called Equal Improvability (EI), which equalizes the potential acceptance rate of the rejected samples across different groups assuming a bounded level of effort will be spent by each rejected sample. We also propose and study three different approaches for finding a classifier that satisfies the EI requirement. Through experiments on both synthetic and real datasets, we demonstrate that the proposed EI-regularized algorithms encourage us to find a fair classifier in terms of EI. Additionally, we ran experiments on dynamic scenarios which highlight the advantages of our EI metric in equalizing the distribution of features across different groups, after the rejected samples make some effort to improve. Finally, we provide mathematical analyses of several aspects of EI: the relationship between EI and existing fairness notions, and the effect of EI in dynamic scenarios. Over the past decade, machine learning has been used in a wide variety of applications. However, these machine learning approaches are observed to be unfair to individuals having different ethnicity, race, and gender. As the implicit bias in artificial intelligence tools raised concerns over potential discrimination and equity issues, various researchers suggested defining fairness notions and developing classifiers that achieve fairness. One popular fairness notion is demographic parity (DP), which requires the decision-making system to provide output such that the groups are equally likely to be assigned to the desired prediction classes, e.g., acceptance in the admission procedure. DP and related fairness notions are largely employed to mitigate the bias in many realistic problems such as recruitment, credit lending, and university admissions (Zafar et al., 2017b; Hardt et al., 2016; Dwork et al., 2012; Zafar et al., 2017a). However, most of the existing fairness notions only focus on immediate fairness, without taking potential follow-up inequity risk into consideration.
The Fair Value of Data Under Heterogeneous Privacy Constraints
Kang, Justin, Pedarsani, Ramtin, Ramchandran, Kannan
Modern data aggregation often takes the form of a platform collecting data from a network of users. More than ever, these users are now requesting that the data they provide is protected with a guarantee of privacy. This has led to the study of optimal data acquisition frameworks, where the optimality criterion is typically the maximization of utility for the agent trying to acquire the data. This involves determining how to allocate payments to users for the purchase of their data at various privacy levels. The main goal of this paper is to characterize a fair amount to pay users for their data at a given privacy level. We propose an axiomatic definition of fairness, analogous to the celebrated Shapley value. Two concepts for fairness are introduced. The first treats the platform and users as members of a common coalition and provides a complete description of how to divide the utility among the platform and users. In the second concept, fairness is defined only among users, leading to a potential fairness-constrained mechanism design problem for the platform. We consider explicit examples involving private heterogeneous data and show how these notions of fairness can be applied. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints.
Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic
Valiente, Rodolfo, Toghi, Behrad, Razzaghpour, Mahdi, Pedarsani, Ramtin, Fallah, Yaser P.
It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human behavior, which is particularly challenging in mixed autonomy. In a road shared by AVs and HVs, the social preferences or individual traits of HVs are unknown to the AVs and different from AVs, which are expected to follow a policy, HVs are particularly difficult to forecast since they do not necessarily follow a stationary policy. To address these challenges, we frame the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs.
An Optimal Transport Approach to Personalized Federated Learning
Farnia, Farzan, Reisizadeh, Amirhossein, Pedarsani, Ramtin, Jadbabaie, Ali
Federated learning is a distributed machine learning paradigm, which aims to train a model using the local data of many distributed clients. A key challenge in federated learning is that the data samples across the clients may not be identically distributed. To address this challenge, personalized federated learning with the goal of tailoring the learned model to the data distribution of every individual client has been proposed. In this paper, we focus on this problem and propose a novel personalized Federated Learning scheme based on Optimal Transport (FedOT) as a learning algorithm that learns the optimal transport maps for transferring data points to a common distribution as well as the prediction model under the applied transport map. To formulate the FedOT problem, we extend the standard optimal transport task between two probability distributions to multi-marginal optimal transport problems with the goal of transporting samples from multiple distributions to a common probability domain. We then leverage the results on multi-marginal optimal transport problems to formulate FedOT as a min-max optimization problem and analyze its generalization and optimization properties. We discuss the results of several numerical experiments to evaluate the performance of FedOT under heterogeneous data distributions in federated learning problems.
Generalized Likelihood Ratio Test for Adversarially Robust Hypothesis Testing
Puranik, Bhagyashree, Madhow, Upamanyu, Pedarsani, Ramtin
Machine learning models are known to be susceptible to adversarial attacks which can cause misclassification by introducing small but well designed perturbations. In this paper, we consider a classical hypothesis testing problem in order to develop fundamental insight into defending against such adversarial perturbations. We interpret an adversarial perturbation as a nuisance parameter, and propose a defense based on applying the generalized likelihood ratio test (GLRT) to the resulting composite hypothesis testing problem, jointly estimating the class of interest and the adversarial perturbation. While the GLRT approach is applicable to general multi-class hypothesis testing, we first evaluate it for binary hypothesis testing in white Gaussian noise under $\ell_{\infty}$ norm-bounded adversarial perturbations, for which a known minimax defense optimizing for the worst-case attack provides a benchmark. We derive the worst-case attack for the GLRT defense, and show that its asymptotic performance (as the dimension of the data increases) approaches that of the minimax defense. For non-asymptotic regimes, we show via simulations that the GLRT defense is competitive with the minimax approach under the worst-case attack, while yielding a better robustness-accuracy tradeoff under weaker attacks. We also illustrate the GLRT approach for a multi-class hypothesis testing problem, for which a minimax strategy is not known, evaluating its performance under both noise-agnostic and noise-aware adversarial settings, by providing a method to find optimal noise-aware attacks, and heuristics to find noise-agnostic attacks that are close to optimal in the high SNR regime.
Emergent Prosociality in Multi-Agent Games Through Gifting
Wang, Woodrow Z., Beliaev, Mark, Bฤฑyฤฑk, Erdem, Lazar, Daniel A., Pedarsani, Ramtin, Sadigh, Dorsa
Coordination is often critical to forming prosocial behaviors -- behaviors that increase the overall sum of rewards received by all agents in a multi-agent game. However, state of the art reinforcement learning algorithms often suffer from converging to socially less desirable equilibria when multiple equilibria exist. Previous works address this challenge with explicit reward shaping, which requires the strong assumption that agents can be forced to be prosocial. We propose using a less restrictive peer-rewarding mechanism, gifting, that guides the agents toward more socially desirable equilibria while allowing agents to remain selfish and decentralized. Gifting allows each agent to give some of their reward to other agents. We employ a theoretical framework that captures the benefit of gifting in converging to the prosocial equilibrium by characterizing the equilibria's basins of attraction in a dynamical system. With gifting, we demonstrate increased convergence of high risk, general-sum coordination games to the prosocial equilibrium both via numerical analysis and experiments.
Incentivizing Efficient Equilibria in Traffic Networks with Mixed Autonomy
Bฤฑyฤฑk, Erdem, Lazar, Daniel A., Pedarsani, Ramtin, Sadigh, Dorsa
Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion by increasing road capacity via vehicle platooning and by creating an avenue for influencing people's choice of routes. We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them, and (ii) a ride hailing service, which provides an array of autonomous vehicle route options, each with different prices, to users. We formalize a model of vehicle flow in mixed autonomy and a model of how autonomous service users make choices between routes with different prices and latencies. Developing an algorithm to learn the preferences of the users, we formulate a planning optimization that chooses prices to maximize a social objective. We demonstrate the benefit of the proposed scheme by comparing the results to theoretical benchmarks which we show can be efficiently calculated.
Robust Classification Under $\ell_0$ Attack for the Gaussian Mixture Model
Delgosha, Payam, Hassani, Hamed, Pedarsani, Ramtin
It is well-known that machine learning models are vulnerable to small but cleverly-designed adversarial perturbations that can cause misclassification. While there has been major progress in designing attacks and defenses for various adversarial settings, many fundamental and theoretical problems are yet to be resolved. In this paper, we consider classification in the presence of $\ell_0$-bounded adversarial perturbations, a.k.a. sparse attacks. This setting is significantly different from other $\ell_p$-adversarial settings, with $p\geq 1$, as the $\ell_0$-ball is non-convex and highly non-smooth. Under the assumption that data is distributed according to the Gaussian mixture model, our goal is to characterize the optimal robust classifier and the corresponding robust classification error as well as a variety of trade-offs between robustness, accuracy, and the adversary's budget. To this end, we develop a novel classification algorithm called FilTrun that has two main modules: Filtration and Truncation. The key idea of our method is to first filter out the non-robust coordinates of the input and then apply a carefully-designed truncated inner product for classification. By analyzing the performance of FilTrun, we derive an upper bound on the optimal robust classification error. We also find a lower bound by designing a specific adversarial strategy that enables us to derive the corresponding robust classifier and its achieved error. For the case that the covariance matrix of the Gaussian mixtures is diagonal, we show that as the input's dimension gets large, the upper and lower bounds converge; i.e. we characterize the asymptotically-optimal robust classifier. Throughout, we discuss several examples that illustrate interesting behaviors such as the existence of a phase transition for adversary's budget determining whether the effect of adversarial perturbation can be fully neutralized.