Goto

Collaborating Authors

 Pearl, Judea


A Constraint Propagation Approach to Probabilistic Reasoning

arXiv.org Artificial Intelligence

The paper demonstrates that strict adherence to probability theory does not preclude the use of concurrent, self-activated constraint-propagation mechanisms for managing uncertainty. Maintaining local records of sources-of-belief allows both predictive and diagnostic inferences to be activated simultaneously and propagate harmoniously towards a stable equilibrium.


Deciding Consistency of Databases Containing Defeasible and Strict Information

arXiv.org Artificial Intelligence

We propose a norm of consistency for a mixed set of defeasible and strict sentences, based on a probabilistic semantics. This norm establishes a clear distinction between knowledge bases depicting exceptions and those containing outright contradictions. We then define a notion of entailment based also on probabilistic considerations and provide a characterization of the relation between consistency and entailment. We derive necessary and sufficient conditions for consistency, and provide a simple decision procedure for testing consistency and deciding whether a sentence is entailed by a database. Finally, it is shown that if al1 sentences are Horn clauses, consistency and entailment can be tested in polynomial time.


Reasoning With Qualitative Probabilities Can Be Tractable

arXiv.org Artificial Intelligence

We recently described a formalism for reasoning with if-then rules that re expressed with different levels of firmness [18]. The formalism interprets these rules as extreme conditional probability statements, specifying orders of magnitude of disbelief, which impose constraints over possible rankings of worlds. It was shown that, once we compute a priority function Z+ on the rules, the degree to which a given query is confirmed or denied can be computed in O(log n`) propositional satisfiability tests, where n is the number of rules in the knowledge base. In this paper, we show that computing Z+ requires O(n2 X log n) satisfiability tests, not an exponential number as was conjectured in [18], which reduces to polynomial complexity in the case of Horn expressions. We also show how reasoning with imprecise observations can be incorporated in our formalism and how the popular notions of belief revision and epistemic entrenchment are embodied naturally and tractably.


An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation

arXiv.org Artificial Intelligence

In a previous paper [Pearl and Verma, 1991] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether there exists a causal model that explains ALL the observed dependencies and independencies. Formally, given a list M of conditional independence statements, it is required to decide whether there exists a directed acyclic graph (dag) D that is perfectly consistent with M, namely, every statement in M, and no other, is reflected via dseparation in D. We present and analyze an effective algorithm that tests for the existence of such a day, and produces one, if it exists.


Deciding Morality of Graphs is NP-complete

arXiv.org Artificial Intelligence

In order to find a causal explanation for data presented in the form of covariance and concentration matrices it is necessary to decide if the graph formed by such associations is a projection of a directed acyclic graph (dag). We show that the general problem of deciding whether such a dag exists is NP-complete.


From Conditional Oughts to Qualitative Decision Theory

arXiv.org Artificial Intelligence

The primary theme of this investigation is a decision theoretic account of conditional ought statements (e.g., "You ought to do A, if C") that rectifies glaring deficiencies in classical deontic logic. The resulting account forms a sound basis for qualitative decision theory, thus providing a framework for qualitative planning under uncertainty. In particular, we show that adding causal relationships (in the form of a single graph) as part of an epistemic state is sufficient to facilitate the analysis of action sequences, their consequences, their interaction with observations, their expected utilities and, hence, the synthesis of plans and strategies under uncertainty.


Direct and Indirect Effects

arXiv.org Artificial Intelligence

The direct effect of one eventon another can be defined and measured byholding constant all intermediate variables between the two.Indirect effects present conceptual andpractical difficulties (in nonlinear models), because they cannot be isolated by holding certain variablesconstant. This paper shows a way of defining any path-specific effectthat does not invoke blocking the remainingpaths.This permits the assessment of a more naturaltype of direct and indirect effects, one thatis applicable in both linear and nonlinear models. The paper establishesconditions under which such assessments can be estimated consistentlyfrom experimental and nonexperimental data,and thus extends path-analytic techniques tononlinear and nonparametric models.


Causal Discovery from Changes

arXiv.org Artificial Intelligence

We propose a new method of discovering causal structures, based on the detection of local, spontaneous changes in the underlying data-generating model. We analyze the classes of structures that are equivalent relative to a stream of distributions produced by local changes, and devise algorithms that output graphical representations of these equivalence classes. We present experimental results, using simulated data, and examine the errors associated with detection of changes and recovery of structures.


Causes and Explanations: A Structural-Model Approach --- Part 1: Causes

arXiv.org Artificial Intelligence

We propose a new definition of actual causes, using structural equations to model counterfactuals.We show that the definitions yield a plausible and elegant account ofcausation that handles well examples which have caused problems forother definitions and resolves major difficulties in the traditionalaccount. In a companion paper, we show how the definition of causality can beused to give an elegant definition of (causal) explanation.


Qualitative MDPs and POMDPs: An Order-Of-Magnitude Approximation

arXiv.org Artificial Intelligence

We develop a qualitative theory of Markov Decision Processes (MDPs) and Partially Observable MDPs that can be used to model sequential decision making tasks when only qualitative information is available. Our approach is based upon an order-of-magnitude approximation of both probabilities and utilities, similar to epsilon-semantics. The result is a qualitative theory that has close ties with the standard maximum-expected-utility theory and is amenable to general planning techniques.