Pearl, Judea
Epsilon-Identifiability of Causal Quantities
Li, Ang, Mueller, Scott, Pearl, Judea
Identifying the effects of causes and causes of effects is vital in virtually every scientific field. Often, however, the needed probabilities may not be fully identifiable from the data sources available. This paper shows how partial identifiability is still possible for several probabilities of causation. We term this epsilon-identifiability and demonstrate its usefulness in cases where the behavior of certain subpopulations can be restricted to within some narrow bounds. In particular, we show how unidentifiable causal effects and counterfactual probabilities can be narrowly bounded when such allowances are made. Often those allowances are easily measured and reasonably assumed. Finally, epsilon-identifiability is applied to the unit selection problem.
Probabilities of Causation with Nonbinary Treatment and Effect
Li, Ang, Pearl, Judea
This paper deals with the problem of estimating the probabilities of causation when treatment and effect are not binary. Tian and Pearl derived sharp bounds for the probability of necessity and sufficiency (PNS), the probability of sufficiency (PS), and the probability of necessity (PN) using experimental and observational data. In this paper, we provide theoretical bounds for all types of probabilities of causation to multivalued treatments and effects. We further discuss examples where our bounds guide practical decisions and use simulation studies to evaluate how informative the bounds are for various combinations of data.
Unit Selection with Causal Diagram
Li, Ang, Pearl, Judea
The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, for example, selecting individuals who would respond one way if encouraged and a different way if not encouraged. Using a combination of experimental and observational data, Li and Pearl derived tight bounds on the "benefit function" - the payoff/cost associated with selecting an individual with given characteristics. This paper shows that these bounds can be narrowed significantly (enough to change decisions) when structural information is available in the form of a causal model. We address the problem of estimating the benefit function using observational and experimental data when specific graphical criteria are assumed to hold.
Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution
Pearl, Judea
Current machine learning systems operate, almost exclusively, in a statistical, or model-free mode, which entails severe theoretical limits on their power and performance. Such systems cannot reason about interventions and retrospection and, therefore, cannot serve as the basis for strong AI. To achieve human level intelligence, learning machines need the guidance of a model of reality, similar to the ones used in causal inference tasks. To demonstrate the essential role of such models, I will present a summary of seven tasks which are beyond reach of current machine learning systems and which have been accomplished using the tools of causal modeling.
Incorporating Knowledge into Structural Equation Models using Auxiliary Variables
Chen, Bryant, Pearl, Judea, Bareinboim, Elias
In this paper, we extend graph-based identification methods by allowing background knowledge in the form of non-zero parameter values. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantive understanding of the domain, or even an identification technique. To incorporate such information systematically, we propose the addition of auxiliary variables to the model, which are constructed so that certain paths will be conveniently cancelled. This cancellation allows the auxiliary variables to help conventional methods of identification (e.g., single-door criterion, instrumental variables, half-trek criterion), as well as model testing (e.g., d-separation, over-identification). Moreover, by iteratively alternating steps of identification and adding auxiliary variables, we can improve the power of existing identification methods via a bootstrapping approach that does not require external knowledge. We operationalize this method for simple instrumental sets (a generalization of instrumental variables) and show that the resulting method is able to identify at least as many models as the most general identification method for linear systems known to date. We further discuss the application of auxiliary variables to the tasks of model testing and z-identification.
Bandits with Unobserved Confounders: A Causal Approach
Bareinboim, Elias, Forney, Andrew, Pearl, Judea
The Multi-Armed Bandit problem constitutes an archetypal setting for sequential decision-making, permeating multiple domains including engineering, business, and medicine. One of the hallmarks of a bandit setting is the agent's capacity to explore its environment through active intervention, which contrasts with the ability to collect passive data by estimating associational relationships between actions and payouts. The existence of unobserved confounders, namely unmeasured variables affecting both the action and the outcome variables, implies that these two data-collection modes will in general not coincide. In this paper, we show that formalizing this distinction has conceptual and algorithmic implications to the bandit setting. The current generation of bandit algorithms implicitly try to maximize rewards based on estimation of the experimental distribution, which we show is not always the best strategy to pursue. Indeed, to achieve low regret in certain realistic classes of bandit problems (namely, in the face of unobserved confounders), both experimental and observational quantities are required by the rational agent. After this realization, we propose an optimization metric (employing both experimental and observational distributions) that bandit agents should pursue, and illustrate its benefits over traditional algorithms.
Graphical Models for Recovering Probabilistic and Causal Queries from Missing Data
Mohan, Karthika, Pearl, Judea
We address the problem of deciding whether a causal or probabilistic query is estimable from data corrupted by missing entries, given a model of missingness process. We extend the results of Mohan et al, 2013 by presenting more general conditions for recovering probabilistic queries of the form P(y|x) and P(y,x) as well as causal queries of the form P(y|do(x)). We show that causal queries may be recoverable even when the factors in their identifying estimands are not recoverable. Specifically, we derive graphical conditions for recovering causal effects of the form P(y|do(x)) when Y and its missingness mechanism are not d-separable. Finally, we apply our results to problems of attrition and characterize the recovery of causal effects from data corrupted by attrition.
Transportability from Multiple Environments with Limited Experiments: Completeness Results
Bareinboim, Elias, Pearl, Judea
This paper addresses the problem of $mz$-transportability, that is, transferring causal knowledge collected in several heterogeneous domains to a target domain in which only passive observations and limited experimental data can be collected. The paper first establishes a necessary and sufficient condition for deciding the feasibility of $mz$-transportability, i.e., whether causal effects in the target domain are estimable from the information available. It further proves that a previously established algorithm for computing transport formula is in fact complete, that is, failure of the algorithm implies non-existence of a transport formula. Finally, the paper shows that the do-calculus is complete for the $mz$-transportability class.
Recovering from Selection Bias in Causal and Statistical Inference
Bareinboim, Elias (UCLA) | Tian, Jin (Iowa State University) | Pearl, Judea (UCLA)
Selection bias is caused by preferential exclusion of units from the samples and represents a major obstacle to valid causal and statistical inferences; it cannot be removed by randomized experiments and can rarely be detected in either experimental or observational studies. In this paper, we provide complete graphical and algorithmic conditions for recovering conditional probabilities from selection biased data. We also provide graphical conditions for recoverability when unbiased data is available over a subset of the variables. Finally, we provide a graphical condition that generalizes the backdoor criterion and serves to recover causal effects when the data is collected under preferential selection.
Testable Implications of Linear Structural Equation Models
Chen, Bryant (University of California, Los Angeles) | Tian, Jin (Iowa State University) | Pearl, Judea (University of California, Los Angeles)
In causal inference, all methods of model learning rely on testable implications, namely, properties of the joint distribution that are dictated by the model structure. These constraints, if not satisfied in the data, allow us to reject or modify the model. Most common methods of testing a linear structural equation model (SEM) rely on the likelihood ratio or chi-square test which simultaneously tests all of the restrictions implied by the model. Local constraints, on the other hand, offer increased power (Bollen and Pearl, 2013; McDonald, 2002) and, in the case of failure, provide the modeler with insight for revising the model specification. One strategy of uncovering local constraints in linear SEMs is to search for overidentified path coefficients. While these overidentifying constraints are well known, no method has been given for systematically discovering them. In this paper, we extend the half-trek criterion of (Foygel et al., 2012) to identify a larger set of structural coefficients and use it to systematically discover overidentifying constraints. Still open is the question of whether our algorithm is complete.