Pawelczyk, Martin
Generalizing Trust: Weak-to-Strong Trustworthiness in Language Models
Pawelczyk, Martin, Sun, Lillian, Qi, Zhenting, Kumar, Aounon, Lakkaraju, Himabindu
The rapid proliferation of generative AI, especially large language models, has led to their integration into a variety of applications. A key phenomenon known as weak-to-strong generalization - where a strong model trained on a weak model's outputs surpasses the weak model in task performance - has gained significant attention. Yet, whether critical trustworthiness properties such as robustness, fairness, and privacy can generalize similarly remains an open question. In this work, we study this question by examining if a stronger model can inherit trustworthiness properties when fine-tuned on a weaker model's outputs, a process we term weak-to-strong trustworthiness generalization. To address this, we introduce two foundational training strategies: 1) Weak Trustworthiness Finetuning (Weak TFT), which leverages trustworthiness regularization during the fine-tuning of the weak model, and 2) Weak and Weak-to-Strong Trustworthiness Finetuning (Weak+WTS TFT), which extends regularization to both weak and strong models. Our experimental evaluation on real-world datasets reveals that while some trustworthiness properties, such as fairness, adversarial, and OOD robustness, show significant improvement in transfer when both models were regularized, others like privacy do not exhibit signs of weak-to-strong trustworthiness. As the first study to explore trustworthiness generalization via weak-to-strong generalization, our work provides valuable insights into the potential and limitations of weak-to-strong generalization.
Towards Non-Adversarial Algorithmic Recourse
Leemann, Tobias, Pawelczyk, Martin, Prenkaj, Bardh, Kasneci, Gjergji
The streams of research on adversarial examples and counterfactual explanations have largely been growing independently. This has led to several recent works trying to elucidate their similarities and differences. Most prominently, it has been argued that adversarial examples, as opposed to counterfactual explanations, have a unique characteristic in that they lead to a misclassification compared to the ground truth. However, the computational goals and methodologies employed in existing counterfactual explanation and adversarial example generation methods often lack alignment with this requirement. Using formal definitions of adversarial examples and counterfactual explanations, we introduce non-adversarial algorithmic recourse and outline why in high-stakes situations, it is imperative to obtain counterfactual explanations that do not exhibit adversarial characteristics. We subsequently investigate how different components in the objective functions, e.g., the machine learning model or cost function used to measure distance, determine whether the outcome can be considered an adversarial example or not. Our experiments on common datasets highlight that these design choices are often more critical in deciding whether recourse is non-adversarial than whether recourse or attack algorithms are used. Furthermore, we show that choosing a robust and accurate machine learning model results in less adversarial recourse desired in practice.
Gaussian Membership Inference Privacy
Leemann, Tobias, Pawelczyk, Martin, Kasneci, Gjergji
We propose a novel and practical privacy notion called $f$-Membership Inference Privacy ($f$-MIP), which explicitly considers the capabilities of realistic adversaries under the membership inference attack threat model. Consequently, $f$-MIP offers interpretable privacy guarantees and improved utility (e.g., better classification accuracy). In particular, we derive a parametric family of $f$-MIP guarantees that we refer to as $\mu$-Gaussian Membership Inference Privacy ($\mu$-GMIP) by theoretically analyzing likelihood ratio-based membership inference attacks on stochastic gradient descent (SGD). Our analysis highlights that models trained with standard SGD already offer an elementary level of MIP. Additionally, we show how $f$-MIP can be amplified by adding noise to gradient updates. Our analysis further yields an analytical membership inference attack that offers two distinct advantages over previous approaches. First, unlike existing state-of-the-art attacks that require training hundreds of shadow models, our attack does not require any shadow model. Second, our analytical attack enables straightforward auditing of our privacy notion $f$-MIP. Finally, we quantify how various hyperparameters (e.g., batch size, number of model parameters) and specific data characteristics determine an attacker's ability to accurately infer a point's membership in the training set. We demonstrate the effectiveness of our method on models trained on vision and tabular datasets.
In-Context Unlearning: Language Models as Few Shot Unlearners
Pawelczyk, Martin, Neel, Seth, Lakkaraju, Himabindu
Machine unlearning, the study of efficiently removing the impact of specific training points on the trained model, has garnered increased attention of late, driven by the need to comply with privacy regulations like the Right to be Forgotten. Although unlearning is particularly relevant for LLMs in light of the copyright issues they raise, achieving precise unlearning is computationally infeasible for very large models. To this end, recent work has proposed several algorithms which approximate the removal of training data without retraining the model. These algorithms crucially rely on access to the model parameters in order to update them, an assumption that may not hold in practice due to computational constraints or when the LLM is accessed via API. In this work, we propose a new class of unlearning methods for LLMs we call ''In-Context Unlearning'', providing inputs in context and without having to update model parameters. To unlearn a particular training instance, we provide the instance alongside a flipped label and additional correctly labelled instances which are prepended as inputs to the LLM at inference time. Our experimental results demonstrate that these contexts effectively remove specific information from the training set while maintaining performance levels that are competitive with (or in some cases exceed) state-of-the-art unlearning methods that require access to the LLM parameters.
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Pawelczyk, Martin, Datta, Teresa, van-den-Heuvel, Johannes, Kasneci, Gjergji, Lakkaraju, Himabindu
As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means for recourse. While several approaches have been proposed to construct recourses for affected individuals, the recourses output by these methods either achieve low costs (i.e., ease-of-implementation) or robustness to small perturbations (i.e., noisy implementations of recourses), but not both due to the inherent trade-offs between the recourse costs and robustness. Furthermore, prior approaches do not provide end users with any agency over navigating the aforementioned trade-offs. In this work, we address the above challenges by proposing the first algorithmic framework which enables users to effectively manage the recourse cost vs. More specifically, our framework Probabilistically ROBust rEcourse (PROBE) lets users choose the probability with which a recourse could get invalidated (recourse invalidation rate) if small changes are made to the recourse i.e., the recourse is implemented somewhat noisily. To this end, we propose a novel objective function which simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation rates, minimizes recourse costs, and also ensures that the resulting recourse achieves a positive model prediction. We develop novel theoretical results to characterize the recourse invalidation rates corresponding to any given instance w.r.t. Experimental evaluation with multiple real world datasets demonstrates the efficacy of the proposed framework. Machine learning (ML) models are increasingly being deployed to make a variety of consequential decisions in domains such as finance, healthcare, and policy. Consequently, there is a growing emphasis on designing tools and techniques which can provide recourse to individuals who have been adversely impacted by the predictions of these models (Voigt & Von dem Bussche, 2017).
On the Trade-Off between Actionable Explanations and the Right to be Forgotten
Pawelczyk, Martin, Leemann, Tobias, Biega, Asia, Kasneci, Gjergji
As machine learning (ML) models are increasingly being deployed in high-stakes applications, policymakers have suggested tighter data protection regulations (e.g., GDPR, CCPA). One key principle is the "right to be forgotten" which gives users the right to have their data deleted. Another key principle is the right to an actionable explanation, also known as algorithmic recourse, allowing users to reverse unfavorable decisions. To date, it is unknown whether these two principles can be operationalized simultaneously. Therefore, we introduce and study the problem of recourse invalidation in the context of data deletion requests. More specifically, we theoretically and empirically analyze the behavior of popular state-of-the-art algorithms and demonstrate that the recourses generated by these algorithms are likely to be invalidated if a small number of data deletion requests (e.g., 1 or 2) warrant updates of the predictive model. For the setting of differentiable models, we suggest a framework to identify a minimal subset of critical training points which, when removed, maximize the fraction of invalidated recourses. Using our framework, we empirically show that the removal of as little as 2 data instances from the training set can invalidate up to 95 percent of all recourses output by popular state-of-the-art algorithms. Thus, our work raises fundamental questions about the compatibility of "the right to an actionable explanation" in the context of the "right to be forgotten", while also providing constructive insights on the determining factors of recourse robustness.
I Prefer not to Say: Protecting User Consent in Models with Optional Personal Data
Leemann, Tobias, Pawelczyk, Martin, Eberle, Christian Thomas, Kasneci, Gjergji
We examine machine learning models in a setup where individuals have the choice to share optional personal information with a decision-making system, as seen in modern insurance pricing models. Some users consent to their data being used whereas others object and keep their data undisclosed. In this work, we show that the decision not to share data can be considered as information in itself that should be protected to respect users' privacy. This observation raises the overlooked problem of how to ensure that users who protect their personal data do not suffer any disadvantages as a result. To address this problem, we formalize protection requirements for models which only use the information for which active user consent was obtained. This excludes implicit information contained in the decision to share data or not. We offer the first solution to this problem by proposing the notion of Protected User Consent (PUC), which we prove to be loss-optimal under our protection requirement. To learn PUC-compliant models, we devise a model-agnostic data augmentation strategy with finite sample convergence guarantees. Finally, we analyze the implications of PUC on a variety of challenging real-world datasets, tasks, and models.
Language Models are Realistic Tabular Data Generators
Borisov, Vadim, Seรler, Kathrin, Leemann, Tobias, Pawelczyk, Martin, Kasneci, Gjergji
Tabular data is among the oldest and most ubiquitous forms of data. However, the generation of synthetic samples with the original data's characteristics remains a significant challenge for tabular data. While many generative models from the computer vision domain, such as variational autoencoders or generative adversarial networks, have been adapted for tabular data generation, less research has been directed towards recent transformer-based large language models (LLMs), which are also generative in nature. To this end, we propose GReaT (Generation of Realistic Tabular data), which exploits an auto-regressive generative LLM to sample synthetic and yet highly realistic tabular data. Furthermore, GReaT can model tabular data distributions by conditioning on any subset of features; the remaining features are sampled without additional overhead. We demonstrate the effectiveness of the proposed approach in a series of experiments that quantify the validity and quality of the produced data samples from multiple angles. We find that GReaT maintains state-of-the-art performance across numerous real-world and synthetic data sets with heterogeneous feature types coming in various sizes.
On the Privacy Risks of Algorithmic Recourse
Pawelczyk, Martin, Lakkaraju, Himabindu, Neel, Seth
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected individuals, potential adversaries could also exploit these recourses to compromise privacy. In this work, we make the first attempt at investigating if and how an adversary can leverage recourses to infer private information about the underlying model's training data. To this end, we propose a series of novel membership inference attacks which leverage algorithmic recourse. More specifically, we extend the prior literature on membership inference attacks to the recourse setting by leveraging the distances between data instances and their corresponding counterfactuals output by state-of-the-art recourse methods. Extensive experimentation with real world and synthetic datasets demonstrates significant privacy leakage through recourses. Our work establishes unintended privacy leakage as an important risk in the widespread adoption of recourse methods.
Decomposing Counterfactual Explanations for Consequential Decision Making
Pawelczyk, Martin, Tiyavorabun, Lea, Kasneci, Gjergji
The goal of algorithmic recourse is to reverse unfavorable decisions (e.g., from loan denial to approval) under automated decision making by suggesting actionable feature changes (e.g., reduce the number of credit cards). To generate low-cost recourse the majority of methods work under the assumption that the features are independently manipulable (IMF). To address the feature dependency issue the recourse problem is usually studied through the causal recourse paradigm. However, it is well known that strong assumptions, as encoded in causal models and structural equations, hinder the applicability of these methods in complex domains where causal dependency structures are ambiguous. In this work, we develop \texttt{DEAR} (DisEntangling Algorithmic Recourse), a novel and practical recourse framework that bridges the gap between the IMF and the strong causal assumptions. \texttt{DEAR} generates recourses by disentangling the latent representation of co-varying features from a subset of promising recourse features to capture the main practical recourse desiderata. Our experiments on real-world data corroborate our theoretically motivated recourse model and highlight our framework's ability to provide reliable, low-cost recourse in the presence of feature dependencies.