Pavlov, Mikhail
OpenAI o1 System Card
OpenAI, null, :, null, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiรฑonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody Y., Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
GPT-4o System Card
OpenAI, null, :, null, Hurst, Aaron, Lerer, Adam, Goucher, Adam P., Perelman, Adam, Ramesh, Aditya, Clark, Aidan, Ostrow, AJ, Welihinda, Akila, Hayes, Alan, Radford, Alec, Mฤ dry, Aleksander, Baker-Whitcomb, Alex, Beutel, Alex, Borzunov, Alex, Carney, Alex, Chow, Alex, Kirillov, Alex, Nichol, Alex, Paino, Alex, Renzin, Alex, Passos, Alex Tachard, Kirillov, Alexander, Christakis, Alexi, Conneau, Alexis, Kamali, Ali, Jabri, Allan, Moyer, Allison, Tam, Allison, Crookes, Amadou, Tootoochian, Amin, Tootoonchian, Amin, Kumar, Ananya, Vallone, Andrea, Karpathy, Andrej, Braunstein, Andrew, Cann, Andrew, Codispoti, Andrew, Galu, Andrew, Kondrich, Andrew, Tulloch, Andrew, Mishchenko, Andrey, Baek, Angela, Jiang, Angela, Pelisse, Antoine, Woodford, Antonia, Gosalia, Anuj, Dhar, Arka, Pantuliano, Ashley, Nayak, Avi, Oliver, Avital, Zoph, Barret, Ghorbani, Behrooz, Leimberger, Ben, Rossen, Ben, Sokolowsky, Ben, Wang, Ben, Zweig, Benjamin, Hoover, Beth, Samic, Blake, McGrew, Bob, Spero, Bobby, Giertler, Bogo, Cheng, Bowen, Lightcap, Brad, Walkin, Brandon, Quinn, Brendan, Guarraci, Brian, Hsu, Brian, Kellogg, Bright, Eastman, Brydon, Lugaresi, Camillo, Wainwright, Carroll, Bassin, Cary, Hudson, Cary, Chu, Casey, Nelson, Chad, Li, Chak, Shern, Chan Jun, Conger, Channing, Barette, Charlotte, Voss, Chelsea, Ding, Chen, Lu, Cheng, Zhang, Chong, Beaumont, Chris, Hallacy, Chris, Koch, Chris, Gibson, Christian, Kim, Christina, Choi, Christine, McLeavey, Christine, Hesse, Christopher, Fischer, Claudia, Winter, Clemens, Czarnecki, Coley, Jarvis, Colin, Wei, Colin, Koumouzelis, Constantin, Sherburn, Dane, Kappler, Daniel, Levin, Daniel, Levy, Daniel, Carr, David, Farhi, David, Mely, David, Robinson, David, Sasaki, David, Jin, Denny, Valladares, Dev, Tsipras, Dimitris, Li, Doug, Nguyen, Duc Phong, Findlay, Duncan, Oiwoh, Edede, Wong, Edmund, Asdar, Ehsan, Proehl, Elizabeth, Yang, Elizabeth, Antonow, Eric, Kramer, Eric, Peterson, Eric, Sigler, Eric, Wallace, Eric, Brevdo, Eugene, Mays, Evan, Khorasani, Farzad, Such, Felipe Petroski, Raso, Filippo, Zhang, Francis, von Lohmann, Fred, Sulit, Freddie, Goh, Gabriel, Oden, Gene, Salmon, Geoff, Starace, Giulio, Brockman, Greg, Salman, Hadi, Bao, Haiming, Hu, Haitang, Wong, Hannah, Wang, Haoyu, Schmidt, Heather, Whitney, Heather, Jun, Heewoo, Kirchner, Hendrik, Pinto, Henrique Ponde de Oliveira, Ren, Hongyu, Chang, Huiwen, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, O'Connell, Ian, Osband, Ian, Silber, Ian, Sohl, Ian, Okuyucu, Ibrahim, Lan, Ikai, Kostrikov, Ilya, Sutskever, Ilya, Kanitscheider, Ingmar, Gulrajani, Ishaan, Coxon, Jacob, Menick, Jacob, Pachocki, Jakub, Aung, James, Betker, James, Crooks, James, Lennon, James, Kiros, Jamie, Leike, Jan, Park, Jane, Kwon, Jason, Phang, Jason, Teplitz, Jason, Wei, Jason, Wolfe, Jason, Chen, Jay, Harris, Jeff, Varavva, Jenia, Lee, Jessica Gan, Shieh, Jessica, Lin, Ji, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Jang, Joanne, Candela, Joaquin Quinonero, Beutler, Joe, Landers, Joe, Parish, Joel, Heidecke, Johannes, Schulman, John, Lachman, Jonathan, McKay, Jonathan, Uesato, Jonathan, Ward, Jonathan, Kim, Jong Wook, Huizinga, Joost, Sitkin, Jordan, Kraaijeveld, Jos, Gross, Josh, Kaplan, Josh, Snyder, Josh, Achiam, Joshua, Jiao, Joy, Lee, Joyce, Zhuang, Juntang, Harriman, Justyn, Fricke, Kai, Hayashi, Kai, Singhal, Karan, Shi, Katy, Karthik, Kavin, Wood, Kayla, Rimbach, Kendra, Hsu, Kenny, Nguyen, Kenny, Gu-Lemberg, Keren, Button, Kevin, Liu, Kevin, Howe, Kiel, Muthukumar, Krithika, Luther, Kyle, Ahmad, Lama, Kai, Larry, Itow, Lauren, Workman, Lauren, Pathak, Leher, Chen, Leo, Jing, Li, Guy, Lia, Fedus, Liam, Zhou, Liang, Mamitsuka, Lien, Weng, Lilian, McCallum, Lindsay, Held, Lindsey, Ouyang, Long, Feuvrier, Louis, Zhang, Lu, Kondraciuk, Lukas, Kaiser, Lukasz, Hewitt, Luke, Metz, Luke, Doshi, Lyric, Aflak, Mada, Simens, Maddie, Boyd, Madelaine, Thompson, Madeleine, Dukhan, Marat, Chen, Mark, Gray, Mark, Hudnall, Mark, Zhang, Marvin, Aljubeh, Marwan, Litwin, Mateusz, Zeng, Matthew, Johnson, Max, Shetty, Maya, Gupta, Mayank, Shah, Meghan, Yatbaz, Mehmet, Yang, Meng Jia, Zhong, Mengchao, Glaese, Mia, Chen, Mianna, Janner, Michael, Lampe, Michael, Petrov, Michael, Wu, Michael, Wang, Michele, Fradin, Michelle, Pokrass, Michelle, Castro, Miguel, de Castro, Miguel Oom Temudo, Pavlov, Mikhail, Brundage, Miles, Wang, Miles, Khan, Minal, Murati, Mira, Bavarian, Mo, Lin, Molly, Yesildal, Murat, Soto, Nacho, Gimelshein, Natalia, Cone, Natalie, Staudacher, Natalie, Summers, Natalie, LaFontaine, Natan, Chowdhury, Neil, Ryder, Nick, Stathas, Nick, Turley, Nick, Tezak, Nik, Felix, Niko, Kudige, Nithanth, Keskar, Nitish, Deutsch, Noah, Bundick, Noel, Puckett, Nora, Nachum, Ofir, Okelola, Ola, Boiko, Oleg, Murk, Oleg, Jaffe, Oliver, Watkins, Olivia, Godement, Olivier, Campbell-Moore, Owen, Chao, Patrick, McMillan, Paul, Belov, Pavel, Su, Peng, Bak, Peter, Bakkum, Peter, Deng, Peter, Dolan, Peter, Hoeschele, Peter, Welinder, Peter, Tillet, Phil, Pronin, Philip, Tillet, Philippe, Dhariwal, Prafulla, Yuan, Qiming, Dias, Rachel, Lim, Rachel, Arora, Rahul, Troll, Rajan, Lin, Randall, Lopes, Rapha Gontijo, Puri, Raul, Miyara, Reah, Leike, Reimar, Gaubert, Renaud, Zamani, Reza, Wang, Ricky, Donnelly, Rob, Honsby, Rob, Smith, Rocky, Sahai, Rohan, Ramchandani, Rohit, Huet, Romain, Carmichael, Rory, Zellers, Rowan, Chen, Roy, Chen, Ruby, Nigmatullin, Ruslan, Cheu, Ryan, Jain, Saachi, Altman, Sam, Schoenholz, Sam, Toizer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Culver, Sara, Ethersmith, Scott, Gray, Scott, Grove, Sean, Metzger, Sean, Hermani, Shamez, Jain, Shantanu, Zhao, Shengjia, Wu, Sherwin, Jomoto, Shino, Wu, Shirong, Shuaiqi, null, Xia, null, Phene, Sonia, Papay, Spencer, Narayanan, Srinivas, Coffey, Steve, Lee, Steve, Hall, Stewart, Balaji, Suchir, Broda, Tal, Stramer, Tal, Xu, Tao, Gogineni, Tarun, Christianson, Taya, Sanders, Ted, Patwardhan, Tejal, Cunninghman, Thomas, Degry, Thomas, Dimson, Thomas, Raoux, Thomas, Shadwell, Thomas, Zheng, Tianhao, Underwood, Todd, Markov, Todor, Sherbakov, Toki, Rubin, Tom, Stasi, Tom, Kaftan, Tomer, Heywood, Tristan, Peterson, Troy, Walters, Tyce, Eloundou, Tyna, Qi, Valerie, Moeller, Veit, Monaco, Vinnie, Kuo, Vishal, Fomenko, Vlad, Chang, Wayne, Zheng, Weiyi, Zhou, Wenda, Manassra, Wesam, Sheu, Will, Zaremba, Wojciech, Patil, Yash, Qian, Yilei, Kim, Yongjik, Cheng, Youlong, Zhang, Yu, He, Yuchen, Zhang, Yuchen, Jin, Yujia, Dai, Yunxing, Malkov, Yury
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
GPT-4 Technical Report
OpenAI, null, :, null, Achiam, Josh, Adler, Steven, Agarwal, Sandhini, Ahmad, Lama, Akkaya, Ilge, Aleman, Florencia Leoni, Almeida, Diogo, Altenschmidt, Janko, Altman, Sam, Anadkat, Shyamal, Avila, Red, Babuschkin, Igor, Balaji, Suchir, Balcom, Valerie, Baltescu, Paul, Bao, Haiming, Bavarian, Mo, Belgum, Jeff, Bello, Irwan, Berdine, Jake, Bernadett-Shapiro, Gabriel, Berner, Christopher, Bogdonoff, Lenny, Boiko, Oleg, Boyd, Madelaine, Brakman, Anna-Luisa, Brockman, Greg, Brooks, Tim, Brundage, Miles, Button, Kevin, Cai, Trevor, Campbell, Rosie, Cann, Andrew, Carey, Brittany, Carlson, Chelsea, Carmichael, Rory, Chan, Brooke, Chang, Che, Chantzis, Fotis, Chen, Derek, Chen, Sully, Chen, Ruby, Chen, Jason, Chen, Mark, Chess, Ben, Cho, Chester, Chu, Casey, Chung, Hyung Won, Cummings, Dave, Currier, Jeremiah, Dai, Yunxing, Decareaux, Cory, Degry, Thomas, Deutsch, Noah, Deville, Damien, Dhar, Arka, Dohan, David, Dowling, Steve, Dunning, Sheila, Ecoffet, Adrien, Eleti, Atty, Eloundou, Tyna, Farhi, David, Fedus, Liam, Felix, Niko, Fishman, Simรณn Posada, Forte, Juston, Fulford, Isabella, Gao, Leo, Georges, Elie, Gibson, Christian, Goel, Vik, Gogineni, Tarun, Goh, Gabriel, Gontijo-Lopes, Rapha, Gordon, Jonathan, Grafstein, Morgan, Gray, Scott, Greene, Ryan, Gross, Joshua, Gu, Shixiang Shane, Guo, Yufei, Hallacy, Chris, Han, Jesse, Harris, Jeff, He, Yuchen, Heaton, Mike, Heidecke, Johannes, Hesse, Chris, Hickey, Alan, Hickey, Wade, Hoeschele, Peter, Houghton, Brandon, Hsu, Kenny, Hu, Shengli, Hu, Xin, Huizinga, Joost, Jain, Shantanu, Jain, Shawn, Jang, Joanne, Jiang, Angela, Jiang, Roger, Jin, Haozhun, Jin, Denny, Jomoto, Shino, Jonn, Billie, Jun, Heewoo, Kaftan, Tomer, Kaiser, ลukasz, Kamali, Ali, Kanitscheider, Ingmar, Keskar, Nitish Shirish, Khan, Tabarak, Kilpatrick, Logan, Kim, Jong Wook, Kim, Christina, Kim, Yongjik, Kirchner, Hendrik, Kiros, Jamie, Knight, Matt, Kokotajlo, Daniel, Kondraciuk, ลukasz, Kondrich, Andrew, Konstantinidis, Aris, Kosic, Kyle, Krueger, Gretchen, Kuo, Vishal, Lampe, Michael, Lan, Ikai, Lee, Teddy, Leike, Jan, Leung, Jade, Levy, Daniel, Li, Chak Ming, Lim, Rachel, Lin, Molly, Lin, Stephanie, Litwin, Mateusz, Lopez, Theresa, Lowe, Ryan, Lue, Patricia, Makanju, Anna, Malfacini, Kim, Manning, Sam, Markov, Todor, Markovski, Yaniv, Martin, Bianca, Mayer, Katie, Mayne, Andrew, McGrew, Bob, McKinney, Scott Mayer, McLeavey, Christine, McMillan, Paul, McNeil, Jake, Medina, David, Mehta, Aalok, Menick, Jacob, Metz, Luke, Mishchenko, Andrey, Mishkin, Pamela, Monaco, Vinnie, Morikawa, Evan, Mossing, Daniel, Mu, Tong, Murati, Mira, Murk, Oleg, Mรฉly, David, Nair, Ashvin, Nakano, Reiichiro, Nayak, Rajeev, Neelakantan, Arvind, Ngo, Richard, Noh, Hyeonwoo, Ouyang, Long, O'Keefe, Cullen, Pachocki, Jakub, Paino, Alex, Palermo, Joe, Pantuliano, Ashley, Parascandolo, Giambattista, Parish, Joel, Parparita, Emy, Passos, Alex, Pavlov, Mikhail, Peng, Andrew, Perelman, Adam, Peres, Filipe de Avila Belbute, Petrov, Michael, Pinto, Henrique Ponde de Oliveira, Michael, null, Pokorny, null, Pokrass, Michelle, Pong, Vitchyr, Powell, Tolly, Power, Alethea, Power, Boris, Proehl, Elizabeth, Puri, Raul, Radford, Alec, Rae, Jack, Ramesh, Aditya, Raymond, Cameron, Real, Francis, Rimbach, Kendra, Ross, Carl, Rotsted, Bob, Roussez, Henri, Ryder, Nick, Saltarelli, Mario, Sanders, Ted, Santurkar, Shibani, Sastry, Girish, Schmidt, Heather, Schnurr, David, Schulman, John, Selsam, Daniel, Sheppard, Kyla, Sherbakov, Toki, Shieh, Jessica, Shoker, Sarah, Shyam, Pranav, Sidor, Szymon, Sigler, Eric, Simens, Maddie, Sitkin, Jordan, Slama, Katarina, Sohl, Ian, Sokolowsky, Benjamin, Song, Yang, Staudacher, Natalie, Such, Felipe Petroski, Summers, Natalie, Sutskever, Ilya, Tang, Jie, Tezak, Nikolas, Thompson, Madeleine, Tillet, Phil, Tootoonchian, Amin, Tseng, Elizabeth, Tuggle, Preston, Turley, Nick, Tworek, Jerry, Uribe, Juan Felipe Cerรณn, Vallone, Andrea, Vijayvergiya, Arun, Voss, Chelsea, Wainwright, Carroll, Wang, Justin Jay, Wang, Alvin, Wang, Ben, Ward, Jonathan, Wei, Jason, Weinmann, CJ, Welihinda, Akila, Welinder, Peter, Weng, Jiayi, Weng, Lilian, Wiethoff, Matt, Willner, Dave, Winter, Clemens, Wolrich, Samuel, Wong, Hannah, Workman, Lauren, Wu, Sherwin, Wu, Jeff, Wu, Michael, Xiao, Kai, Xu, Tao, Yoo, Sarah, Yu, Kevin, Yuan, Qiming, Zaremba, Wojciech, Zellers, Rowan, Zhang, Chong, Zhang, Marvin, Zhao, Shengjia, Zheng, Tianhao, Zhuang, Juntang, Zhuk, William, Zoph, Barret
We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.
Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
Kidziลski, ลukasz, Mohanty, Sharada Prasanna, Ong, Carmichael, Huang, Zhewei, Zhou, Shuchang, Pechenko, Anton, Stelmaszczyk, Adam, Jarosik, Piotr, Pavlov, Mikhail, Kolesnikov, Sergey, Plis, Sergey, Chen, Zhibo, Zhang, Zhizheng, Chen, Jiale, Shi, Jun, Zheng, Zhuobin, Yuan, Chun, Lin, Zhihui, Michalewski, Henryk, Miลoล, Piotr, Osiลski, Bลaลผej, Melnik, Andrew, Schilling, Malte, Ritter, Helge, Carroll, Sean, Hicks, Jennifer, Levine, Sergey, Salathรฉ, Marcel, Delp, Scott
In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.
Run, Skeleton, Run: Skeletal Model in a Physics-Based Simulation
Pavlov, Mikhail (Reason8) | Kolesnikov, Sergey (Reason8) | Plis, Sergey (Reason8)
In this paper, we present our approach to solve a physics-based reinforcement learning challenge "Learning to Run'' with objective to train physiologically-based human model to navigate a complex obstacle course as quickly as possible.The environment is computationally expensive, has a high-dimensional continuous action space and is stochastic. We benchmark state of the art policy-gradient methods and test several improvements, such as layer normalization, parameter noise, action and state reflecting, to stabilize training and improve its sample-efficiency.We found that the Deep Deterministic Policy Gradient method is the most efficient method for this environment and the improvements we have introduced help to stabilize training.Learned models are able to generalize to new physical scenarios, e.g. different obstacle courses.
Run, skeleton, run: skeletal model in a physics-based simulation
Pavlov, Mikhail, Kolesnikov, Sergey, Plis, Sergey M.
In this paper, we present our approach to solve a physics-based reinforcement learning challenge "Learning to Run" with objective to train physiologically-based human model to navigate a complex obstacle course as quickly as possible. The environment is computationally expensive, has a high-dimensional continuous action space and is stochastic. We benchmark state of the art policy-gradient methods and test several improvements, such as layer normalization, parameter noise, action and state reflecting, to stabilize training and improve its sample-efficiency. We found that the Deep Deterministic Policy Gradient method is the most efficient method for this environment and the improvements we have introduced help to stabilize training. Learned models are able to generalize to new physical scenarios, e.g. different obstacle courses.