Goto

Collaborating Authors

 Pavlick, Ellie


Bayesian Preference Elicitation with Language Models

arXiv.org Artificial Intelligence

Aligning AI systems to users' interests requires understanding and incorporating humans' complex values and preferences. Recently, language models (LMs) have been used to gather information about the preferences of human users. This preference data can be used to fine-tune or guide other LMs and/or AI systems. However, LMs have been shown to struggle with crucial aspects of preference learning: quantifying uncertainty, modeling human mental states, and asking informative questions. These challenges have been addressed in other areas of machine learning, such as Bayesian Optimal Experimental Design (BOED), which focus on designing informative queries within a well-defined feature space. But these methods, in turn, are difficult to scale and apply to real-world problems where simply identifying the relevant features can be difficult. We introduce OPEN (Optimal Preference Elicitation with Natural language) a framework that uses BOED to guide the choice of informative questions and an LM to extract features and translate abstract BOED queries into natural language questions. By combining the flexibility of LMs with the rigor of BOED, OPEN can optimize the informativity of queries while remaining adaptable to real-world domains. In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.


Understanding Subjectivity through the Lens of Motivational Context in Model-Generated Image Satisfaction

arXiv.org Artificial Intelligence

Image generation models are poised to become ubiquitous in a range of applications. These models are often fine-tuned and evaluated using human quality judgments that assume a universal standard, failing to consider the subjectivity of such tasks. To investigate how to quantify subjectivity, and the scale of its impact, we measure how assessments differ among human annotators across different use cases. Simulating the effects of ordinarily latent elements of annotators subjectivity, we contrive a set of motivations (t-shirt graphics, presentation visuals, and phone background images) to contextualize a set of crowdsourcing tasks. Our results show that human evaluations of images vary within individual contexts and across combinations of contexts. Three key factors affecting this subjectivity are image appearance, image alignment with text, and representation of objects mentioned in the text. Our study highlights the importance of taking individual users and contexts into account, both when building and evaluating generative models


Human Curriculum Effects Emerge with In-Context Learning in Neural Networks

arXiv.org Artificial Intelligence

Human learning is sensitive to rule-like structure and the curriculum of examples used for training. In tasks governed by succinct rules, learning is more robust when related examples are blocked across trials, but in the absence of such rules, interleaving is more effective. To date, no neural model has simultaneously captured these seemingly contradictory effects. Here we show that this same tradeoff spontaneously emerges with "in-context learning" (ICL) both in neural networks trained with metalearning and in large language models (LLMs). ICL is the ability to learn new tasks "in context" - without weight changes - via an inner-loop algorithm implemented in activation dynamics. Experiments with pretrained LLMs and metalearning transformers show that ICL exhibits the blocking advantage demonstrated in humans on a task involving rule-like structure, and conversely, that concurrent in-weight learning reproduces the interleaving advantage observed in humans on tasks lacking such structure.


Transformer Mechanisms Mimic Frontostriatal Gating Operations When Trained on Human Working Memory Tasks

arXiv.org Artificial Intelligence

Models based on the Transformer neural network architecture have seen success on a wide variety of tasks that appear to require complex "cognitive branching" -- or the ability to maintain pursuit of one goal while accomplishing others. In cognitive neuroscience, success on such tasks is thought to rely on sophisticated frontostriatal mechanisms for selective \textit{gating}, which enable role-addressable updating -- and later readout -- of information to and from distinct "addresses" of memory, in the form of clusters of neurons. However, Transformer models have no such mechanisms intentionally built-in. It is thus an open question how Transformers solve such tasks, and whether the mechanisms that emerge to help them to do so bear any resemblance to the gating mechanisms in the human brain. In this work, we analyze the mechanisms that emerge within a vanilla attention-only Transformer trained on a simple sequence modeling task inspired by a task explicitly designed to study working memory gating in computational cognitive neuroscience. We find that, as a result of training, the self-attention mechanism within the Transformer specializes in a way that mirrors the input and output gating mechanisms which were explicitly incorporated into earlier, more biologically-inspired architectures. These results suggest opportunities for future research on computational similarities between modern AI architectures and models of the human brain.


Instilling Inductive Biases with Subnetworks

arXiv.org Artificial Intelligence

Despite the recent success of artificial neural networks on a variety of tasks, we have little knowledge or control over the exact solutions these models implement. Instilling inductive biases -- preferences for some solutions over others -- into these models is one promising path toward understanding and controlling their behavior. Much work has been done to study the inherent inductive biases of models and instill different inductive biases through hand-designed architectures or carefully curated training regimens. In this work, we explore a more mechanistic approach: Subtask Induction. Our method discovers a functional subnetwork that implements a particular subtask within a trained model and uses it to instill inductive biases towards solutions utilizing that subtask. Subtask Induction is flexible and efficient, and we demonstrate its effectiveness with two experiments. First, we show that Subtask Induction significantly reduces the amount of training data required for a model to adopt a specific, generalizable solution to a modular arithmetic task. Second, we demonstrate that Subtask Induction successfully induces a human-like shape bias while increasing data efficiency for convolutional and transformer-based image classification models.


Circuit Component Reuse Across Tasks in Transformer Language Models

arXiv.org Artificial Intelligence

Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.


Uncovering Intermediate Variables in Transformers using Circuit Probing

arXiv.org Artificial Intelligence

Probing involves learning a classifier to decode information about a hypothesized intermediate variable from model activations (Tenney et al., 2019; Hewitt & Manning, 2019; Ettinger, 2020; Li et al., 2022; Nanda et al., 2023). Prior work has demonstrated that probing oftentimes mischaracterizes the underlying computations performed by the model (Hewitt & Liang, 2019; Zhang & Bowman, 2018; Voita & Titov, 2020)). Among other methods (Ravfogel et al., 2020; 2022; Belrose et al., 2023), counterfactual embeddings were introduced to fix this problem, enabling causal analysis using probes (Tucker et al., 2021). We empirically demonstrate that circuit probing is more faithful to a model's computation than linear or nonlinear probing (See Sections 3.2, 3.3), and that counterfactual embeddings do not always solve this problem (See Sections 3.1, 3.2). Causal abstraction analysis intervenes on the activation vectors produced by Transformer layers to localize intermediate variables to particular vector subspaces (Geiger et al., 2021; 2023; Wu et al., 2023). However, causal abstraction analysis requires hypothesizing a complete causal graph - a high-level description of how inputs are mapped to predictions, including all interactions between intermediate variables. This is impossible for most real-world tasks on which we want to apply neural networks (such as language modeling). We empirically demonstrate the utility of recent causal abstraction analysis techniques when full causal graphs are available, and show that circuit probing arrives at the same results (See Sections 3.1, 3.2).


Are Language Models Worse than Humans at Following Prompts? It's Complicated

arXiv.org Artificial Intelligence

Prompts have been the center of progress in advancing language models' zero-shot and few-shot performance. However, recent work finds that models can perform surprisingly well when given intentionally irrelevant or misleading prompts. Such results may be interpreted as evidence that model behavior is not "human like". In this study, we challenge a central assumption in such work: that humans would perform badly when given pathological instructions. We find that humans are able to reliably ignore irrelevant instructions and thus, like models, perform well on the underlying task despite an apparent lack of signal regarding the task they are being asked to do. However, when given deliberately misleading instructions, humans follow the instructions faithfully, whereas models do not. Our findings caution that future research should not idealize human behaviors as a monolith and should not train or evaluate models to mimic assumptions about these behaviors without first validating humans' behaviors empirically.


Analyzing Modular Approaches for Visual Question Decomposition

arXiv.org Artificial Intelligence

Modular neural networks without additional training have recently been shown to surpass end-to-end neural networks on challenging vision-language tasks. The latest such methods simultaneously introduce LLM-based code generation to build programs and a number of skill-specific, task-oriented modules to execute them. In this paper, we focus on ViperGPT and ask where its additional performance comes from and how much is due to the (state-of-art, end-to-end) BLIP-2 model it subsumes vs. additional symbolic components. To do so, we conduct a controlled study (comparing end-to-end, modular, and prompting-based methods across several VQA benchmarks). We find that ViperGPT's reported gains over BLIP-2 can be attributed to its selection of task-specific modules, and when we run ViperGPT using a more task-agnostic selection of modules, these gains go away. Additionally, ViperGPT retains much of its performance if we make prominent alterations to its selection of modules: e.g. removing or retaining only BLIP-2. Finally, we compare ViperGPT against a prompting-based decomposition strategy and find that, on some benchmarks, modular approaches significantly benefit by representing subtasks with natural language, instead of code.


Emergence of Abstract State Representations in Embodied Sequence Modeling

arXiv.org Artificial Intelligence

Decision making via sequence modeling aims to mimic the success of language models, where actions taken by an embodied agent are modeled as tokens to predict. Despite their promising performance, it remains unclear if embodied sequence modeling leads to the emergence of internal representations that represent the environmental state information. A model that lacks abstract state representations would be liable to make decisions based on surface statistics which fail to generalize. We take the BabyAI environment, a grid world in which language-conditioned navigation tasks are performed, and build a sequence modeling Transformer, which takes a language instruction, a sequence of actions, and environmental observations as its inputs. In order to investigate the emergence of abstract state representations, we design a "blindfolded" navigation task, where only the initial environmental layout, the language instruction, and the action sequence to complete the task are available for training. Our probing results show that intermediate environmental layouts can be reasonably reconstructed from the internal activations of a trained model, and that language instructions play a role in the reconstruction accuracy. Our results suggest that many key features of state representations can emerge via embodied sequence modeling, supporting an optimistic outlook for applications of sequence modeling objectives to more complex embodied decision-making domains.