Pavel Dvurechenskii
Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods
Lev Bogolubsky, Pavel Dvurechenskii, Alexander Gasnikov, Gleb Gusev, Yurii Nesterov, Andrei M. Raigorodskii, Aleksey Tikhonov, Maksim Zhukovskii
In this paper, we consider a non-convex loss-minimization problem of learning Supervised PageRank models, which can account for features of nodes and edges. We propose gradient-based and random gradient-free methods to solve this problem. Our algorithms are based on the concept of an inexact oracle and unlike the state-ofthe-art gradient-based method we manage to provide theoretically the convergence rate guarantees for both of them. Finally, we compare the performance of the proposed optimization methods with the state of the art applied to a ranking task.
Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters
Pavel Dvurechenskii, Darina Dvinskikh, Alexander Gasnikov, Cesar Uribe, Angelia Nedich
We study the decentralized distributed computation of discrete approximations for the regularized Wasserstein barycenter of a finite set of continuous probability measures distributedly stored over a network. We assume there is a network of agents/machines/computers, and each agent holds a private continuous probability measure and seeks to compute the barycenter of all the measures in the network by getting samples from its local measure and exchanging information with its neighbors. Motivated by this problem, we develop, and analyze, a novel accelerated primal-dual stochastic gradient method for general stochastic convex optimization problems with linear equality constraints. Then, we apply this method to the decentralized distributed optimization setting to obtain a new algorithm for the distributed semi-discrete regularized Wasserstein barycenter problem. Moreover, we show explicit non-asymptotic complexity for the proposed algorithm. Finally, we show the effectiveness of our method on the distributed computation of the regularized Wasserstein barycenter of univariate Gaussian and von Mises distributions, as well as some applications to image aggregation.
Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters
Pavel Dvurechenskii, Darina Dvinskikh, Alexander Gasnikov, Cesar Uribe, Angelia Nedich
We study the decentralized distributed computation of discrete approximations for the regularized Wasserstein barycenter of a finite set of continuous probability measures distributedly stored over a network. We assume there is a network of agents/machines/computers, and each agent holds a private continuous probability measure and seeks to compute the barycenter of all the measures in the network by getting samples from its local measure and exchanging information with its neighbors. Motivated by this problem, we develop, and analyze, a novel accelerated primal-dual stochastic gradient method for general stochastic convex optimization problems with linear equality constraints. Then, we apply this method to the decentralized distributed optimization setting to obtain a new algorithm for the distributed semi-discrete regularized Wasserstein barycenter problem. Moreover, we show explicit non-asymptotic complexity for the proposed algorithm. Finally, we show the effectiveness of our method on the distributed computation of the regularized Wasserstein barycenter of univariate Gaussian and von Mises distributions, as well as some applications to image aggregation.