Goto

Collaborating Authors

 Paulus, Romain


CO-Search: COVID-19 Information Retrieval with Semantic Search, Question Answering, and Abstractive Summarization

arXiv.org Artificial Intelligence

The COVID-19 global pandemic has resulted in international efforts to understand, track, and mitigate the disease, yielding a significant corpus of COVID-19 and SARS-CoV-2-related publications across scientific disciplines. As of May 2020, 128,000 coronavirus-related publications have been collected through the COVID-19 Open Research Dataset Challenge [23]. Here we present CO-Search, a retriever-ranker semantic search engine designed to handle complex queries over the COVID-19 literature, potentially aiding overburdened health workers in finding scientific answers during a time of crisis. The retriever is built from a Siamese-BERT[18] encoder that is linearly composed with a TF-IDF vectorizer [19], and reciprocal-rank fused [5] with a BM25 vectorizer. The ranker is composed of a multi-hop question-answering module[1], that together with a multi-paragraph abstractive summarizer adjust retriever scores. To account for the domain-specific and relatively limited dataset, we generate a bipartite graph of document paragraphs and citations, creating 1.3 million (citation title, paragraph) tuples for training the encoder. We evaluate our system on the data of the TREC-COVID[22] information retrieval challenge. CO-Search obtains top performance on the datasets of the first and second rounds, across several key metrics: normalized discounted cumulative gain, precision, mean average precision, and binary preference.


Global Belief Recursive Neural Networks

Neural Information Processing Systems

Recursive Neural Networks have recently obtained state of the art performance on several natural language processing tasks. However, because of their feedforward architecture they cannot correctly predict phrase or word labels that are determined by context. This is a problem in tasks such as aspect-specific sentiment classification which tries to, for instance, predict that the word Android is positive in the sentence Android beats iOS. We introduce global belief recursive neural networks (GB-RNNs) which are based on the idea of extending purely feedforward neural networks to include one feedbackward step during inference. This allows phrase level predictions and representations to give feedback to words. We show the effectiveness of this model on the task of contextual sentiment analysis. We also show that dropout can improve RNN training and that a combination of unsupervised and supervised word vector representations performs better than either alone. The feedbackward step improves F1 performance by 3% over the standard RNN on this task, obtains state-of-the-art performance on the SemEval 2013 challenge and can accurately predict the sentiment of specific entities.